
Efficient Graph Representation Unlearning Approach:
GraphEditor and Projector

Weilin Cong
congweilin95@gmail.com

June 12, 2022

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 1 / 22

congweilin95@gmail.com

Motivation

Due to privacy concerns, removing the effect of a specific node from the
pre-trained graph representation learning model has attract much
attention.

Training
GNN model

H(!) = σ(PH(!−1)W(!))

Update

?

Graph
Representation
Unlearning

Re-training from scratch

1Figure edited from freecodecamp.org
The Pennsylvania State University Graph Representation Unlearning June 12, 2022 2 / 22

https://www.freecodecamp.org/news/deep-dive-into-graph-traversals-227a90c6a261/

Motivation

Retraining from scratch ⇒ computation prohibitive + infeasible

Efficient unlearning: exact unlearning + approximate unlearning

Training
GNN model

H(!) = σ(PH(!−1)W(!))

Update

?

Graph
Representation
Unlearning

Re-training from scratch

1Figure edited from freecodecamp.org
The Pennsylvania State University Graph Representation Unlearning June 12, 2022 3 / 22

https://www.freecodecamp.org/news/deep-dive-into-graph-traversals-227a90c6a261/

Overview on machine unlearning and graph application

Exact unlearning:

SISA1 and GraphEraser2: Randomly split the original dataset into
multiple disjoint shards and re-training each shard model
independently. Similar to federated learning.
Limitations: Each shard model’s performance is poor due to lack to
training data and data heterogeneity.

Approximate unlearning:

Influence3 and Fisher4: Using second-order gradient update to
minimize the objectvie after data deletion.
Approximate unlearning by its nature, lack of guarantee on whether all
information associated with the deleted data are eliminated, which
could be validated by experiments.

1Bourtoule et al., “Machine unlearning”.
2Chen et al., “Graph Unlearning”.
3Guo et al., “Certified Data Removal from Machine Learning Models”.
4Golatkar, Achille, and Soatto, “Eternal sunshine of the spotless net: Selective

forgetting in deep networks”.
The Pennsylvania State University Graph Representation Unlearning June 12, 2022 4 / 22

Graph representation unleanring is more challenging

In graph representation unlearning, we not only need to remove the
information related to the deleted nodes, but also need to update its
impact on neighboring remaining nodes of multi-hops.

1

2 4

3

5

6

1

2 4

3

5

6

Before unlearning After unlearning

Delete node 1

!1 3

Deleted node
Affected nodes
Not affected nodes

h
(1)
i = σ

 ∑

j∈N (vi)

αijh
(0)
j W

 , αij =

1√
deg(vi) deg(vj)

Since most of the existing unlearning methods only support data
deletion, extending their application to graphs is non-trivial.

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 5 / 22

GraphEditor

GraphEditor supports

✓node deletion + edge deletion

✓node addition + edge addition

✓node feature update

GraphEditor requires

× retraining from scratch,

× all data presented during unlearning,

✓... but only applicable to linear GNNs5 (e.g., APPNP, SGC)

GraphEditor is exact unlearning and has algorithmic level data removal
guarantee.

5Most approximate unlearning methods require such linearity requirement. Their
extension to non-linear models requires first pre-training a deep neural network as a
feature extractor for the linear model, and then only unlearning the linear model without
updating the feature extractor.
The Pennsylvania State University Graph Representation Unlearning June 12, 2022 6 / 22

GraphEditor

(Before unlearning) Learning via closed-form solution:

Formulate ordinary GNN training as linear GNN with Ridge regression
as objective,

LRidge(W;X,Y) = ∥XW − Y∥2F + λ∥W∥2F, X = PLH(0),

where node representation X is computed by applying L graph
propagation matrices P = D−1/2AD−1/2 on node features H(0).

This can be efficiently solved by closed-form solution:

W⋆ = argminW LRidge(W;X,Y) = (X⊤X+ λI)−1

︸ ︷︷ ︸
Denote as S⋆

X⊤Y,

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 7 / 22

GraphEditor

(Before unlearning) Learning via closed-form solution:

B GRAPHEDITOR: details, correctiveness, and time complexity690

In the following, we first introduce the closed-form solution before unlearning in Section B.1, then691

show how to remove and add information that associated with the node features in Section B.2 and692

Section B.3, which is heavily relying on the following lemma.693

Lemma 3 (Sherman–Morrison–Woodbury formula [33]). Suppose X 2 RN⇥N is an invertible694

square matrix and u,v 2 RN are column vectors. Then X + uv> is invertible if and only if695

1 + v>X�1u 6= 0. In this case, we have696

�
X + uv>��1

= X�1 � X�1uv>X�1

1 + v>X�1u
. (3)

The overall GRAPHEDITOR algorithm is summarized in Algorithm 1.697

Algorithm 1 GRAPHEDITOR (Numpy-like pseudo-code)

(Before unlearning) Compute the closed-form solution
S, W = find_W(X, Y)

(GraphEditor) Step 1: Delete information
S, W = remove_data(X[Vrm [Vupd], Y [Vrm [Vupd], S, W)

(GraphEditor) Step 2: Update information

S, W = add_data(X̃[Vupd], Ỹ [Vupd], S, W)

(Optional) Fine-tune W using cross-entropy loss

def find_W(X, Y, reg=0):
XtX = X.T@X + reg*numpy.eye(X.shape[0])
S = numpy.linalg.inv(XtX)
Xty = X.T@Y
W = S@Xty
return S, W

def remove_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I - X@S@X.T)
C = Y - X@W
D = X@S
return S + A@B@D, W - A@B@C

def add_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I + X@S@X.T)
C = Y - X@W
D = X@S
return S - A@B@D, W + A@B@C

B.1 Before unlearning: closed-form solution by find W(X, Y)698

Let X 2 RN⇥dx denote the input node feature matrix and label vector Y 2 RN⇥dy . Then, the699

closed-form solution is as follows700

W? = arg min
W

kXW � Yk2
F + �kWk2

F = (X>X + �In)�1X>Y. (4)

Lemma 4. The time complexity for computing Eq. 4 is O(Nd2
x + Ndxdy + d2

xdy), where dx, dy are701

the number of dimension of X,Y, N = |V| is the number of nodes in the graph.702

Proof of Lemma 4. The time complexity for computing A = X>X + �In 2 Rdx⇥dx is O(Nd2
x),703

the time complexity for computing B = X>Y 2 Rdx⇥dy is O(Ndxdy), the time complexity for704

computing A�1 is O(d3
x), and the time complexity for computing A�1B is O(d2

xdy). Then, the705

total time complexity of computing the closed-form solution is O(Nd2
x + Ndxdy + d2

xdy).706

18

B GRAPHEDITOR: details, correctiveness, and time complexity690

In the following, we first introduce the closed-form solution before unlearning in Section B.1, then691

show how to remove and add information that associated with the node features in Section B.2 and692

Section B.3, which is heavily relying on the following lemma.693

Lemma 3 (Sherman–Morrison–Woodbury formula [33]). Suppose X 2 RN⇥N is an invertible694

square matrix and u,v 2 RN are column vectors. Then X + uv> is invertible if and only if695

1 + v>X�1u 6= 0. In this case, we have696

�
X + uv>��1

= X�1 � X�1uv>X�1

1 + v>X�1u
. (3)

The overall GRAPHEDITOR algorithm is summarized in Algorithm 1.697

Algorithm 1 GRAPHEDITOR (Numpy-like pseudo-code)

(Before unlearning) Compute the closed-form solution
S, W = find_W(X, Y)

(GraphEditor) Step 1: Delete information
S, W = remove_data(X[Vrm [Vupd], Y [Vrm [Vupd], S, W)

(GraphEditor) Step 2: Update information

S, W = add_data(X̃[Vupd], Ỹ [Vupd], S, W)

(Optional) Fine-tune W using cross-entropy loss

def find_W(X, Y, reg=0):
XtX = X.T@X + reg*numpy.eye(X.shape[0])
S = numpy.linalg.inv(XtX)
Xty = X.T@Y
W = S@Xty
return S, W

def remove_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I - X@S@X.T)
C = Y - X@W
D = X@S
return S + A@B@D, W - A@B@C

def add_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I + X@S@X.T)
C = Y - X@W
D = X@S
return S - A@B@D, W + A@B@C

B.1 Before unlearning: closed-form solution by find W(X, Y)698

Let X 2 RN⇥dx denote the input node feature matrix and label vector Y 2 RN⇥dy . Then, the699

closed-form solution is as follows700

W? = arg min
W

kXW � Yk2
F + �kWk2

F = (X>X + �In)�1X>Y. (4)

Lemma 4. The time complexity for computing Eq. 4 is O(Nd2
x + Ndxdy + d2

xdy), where dx, dy are701

the number of dimension of X,Y, N = |V| is the number of nodes in the graph.702

Proof of Lemma 4. The time complexity for computing A = X>X + �In 2 Rdx⇥dx is O(Nd2
x),703

the time complexity for computing B = X>Y 2 Rdx⇥dy is O(Ndxdy), the time complexity for704

computing A�1 is O(d3
x), and the time complexity for computing A�1B is O(d2

xdy). Then, the705

total time complexity of computing the closed-form solution is O(Nd2
x + Ndxdy + d2

xdy).706

18

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 8 / 22

GraphEditor

(Unlearning) Step 1. Efficiently remove the effect of the deleted nodes on
weight parameters:

Let Vrm = {vi} denote the set of node to remove

Let Vupd = {vj | SPD(vi , vj) ≤ 2L, ∀vj ∈ V, ∀vi ∈ Vrm} denote
affected node set

Given the initial solution S⋆ and W⋆, we first update the inversed
correlation matrix as

Srm = S⋆ + S⋆X
⊤
rm[I− XrmS⋆X

⊤
rm]

−1XrmS⋆, (1)

and update the optimal solution by

Wrm = W⋆ − S⋆X
⊤
rm[I− XrmS⋆X

⊤
rm]

−1(Yrm − XrmW⋆). (2)

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 9 / 22

GraphEditor

(Unlearning) Step 1. Efficiently remove the effect of the deleted nodes on
weight parameters:

B GRAPHEDITOR: details, correctiveness, and time complexity690

In the following, we first introduce the closed-form solution before unlearning in Section B.1, then691

show how to remove and add information that associated with the node features in Section B.2 and692

Section B.3, which is heavily relying on the following lemma.693

Lemma 3 (Sherman–Morrison–Woodbury formula [33]). Suppose X 2 RN⇥N is an invertible694

square matrix and u,v 2 RN are column vectors. Then X + uv> is invertible if and only if695

1 + v>X�1u 6= 0. In this case, we have696

�
X + uv>��1

= X�1 � X�1uv>X�1

1 + v>X�1u
. (3)

The overall GRAPHEDITOR algorithm is summarized in Algorithm 1.697

Algorithm 1 GRAPHEDITOR (Numpy-like pseudo-code)

(Before unlearning) Compute the closed-form solution
S, W = find_W(X, Y)

(GraphEditor) Step 1: Delete information
S, W = remove_data(X[Vrm [Vupd], Y [Vrm [Vupd], S, W)

(GraphEditor) Step 2: Update information

S, W = add_data(X̃[Vupd], Ỹ [Vupd], S, W)

(Optional) Fine-tune W using cross-entropy loss

def find_W(X, Y, reg=0):
XtX = X.T@X + reg*numpy.eye(X.shape[0])
S = numpy.linalg.inv(XtX)
Xty = X.T@Y
W = S@Xty
return S, W

def remove_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I - X@S@X.T)
C = Y - X@W
D = X@S
return S + A@B@D, W - A@B@C

def add_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I + X@S@X.T)
C = Y - X@W
D = X@S
return S - A@B@D, W + A@B@C

B.1 Before unlearning: closed-form solution by find W(X, Y)698

Let X 2 RN⇥dx denote the input node feature matrix and label vector Y 2 RN⇥dy . Then, the699

closed-form solution is as follows700

W? = arg min
W

kXW � Yk2
F + �kWk2

F = (X>X + �In)�1X>Y. (4)

Lemma 4. The time complexity for computing Eq. 4 is O(Nd2
x + Ndxdy + d2

xdy), where dx, dy are701

the number of dimension of X,Y, N = |V| is the number of nodes in the graph.702

Proof of Lemma 4. The time complexity for computing A = X>X + �In 2 Rdx⇥dx is O(Nd2
x),703

the time complexity for computing B = X>Y 2 Rdx⇥dy is O(Ndxdy), the time complexity for704

computing A�1 is O(d3
x), and the time complexity for computing A�1B is O(d2

xdy). Then, the705

total time complexity of computing the closed-form solution is O(Nd2
x + Ndxdy + d2

xdy).706

18

B GRAPHEDITOR: details, correctiveness, and time complexity690

In the following, we first introduce the closed-form solution before unlearning in Section B.1, then691

show how to remove and add information that associated with the node features in Section B.2 and692

Section B.3, which is heavily relying on the following lemma.693

Lemma 3 (Sherman–Morrison–Woodbury formula [33]). Suppose X 2 RN⇥N is an invertible694

square matrix and u,v 2 RN are column vectors. Then X + uv> is invertible if and only if695

1 + v>X�1u 6= 0. In this case, we have696

�
X + uv>��1

= X�1 � X�1uv>X�1

1 + v>X�1u
. (3)

The overall GRAPHEDITOR algorithm is summarized in Algorithm 1.697

Algorithm 1 GRAPHEDITOR (Numpy-like pseudo-code)

(Before unlearning) Compute the closed-form solution
S, W = find_W(X, Y)

(GraphEditor) Step 1: Delete information
S, W = remove_data(X[Vrm [Vupd], Y [Vrm [Vupd], S, W)

(GraphEditor) Step 2: Update information

S, W = add_data(X̃[Vupd], Ỹ [Vupd], S, W)

(Optional) Fine-tune W using cross-entropy loss

def find_W(X, Y, reg=0):
XtX = X.T@X + reg*numpy.eye(X.shape[0])
S = numpy.linalg.inv(XtX)
Xty = X.T@Y
W = S@Xty
return S, W

def remove_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I - X@S@X.T)
C = Y - X@W
D = X@S
return S + A@B@D, W - A@B@C

def add_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I + X@S@X.T)
C = Y - X@W
D = X@S
return S - A@B@D, W + A@B@C

B.1 Before unlearning: closed-form solution by find W(X, Y)698

Let X 2 RN⇥dx denote the input node feature matrix and label vector Y 2 RN⇥dy . Then, the699

closed-form solution is as follows700

W? = arg min
W

kXW � Yk2
F + �kWk2

F = (X>X + �In)�1X>Y. (4)

Lemma 4. The time complexity for computing Eq. 4 is O(Nd2
x + Ndxdy + d2

xdy), where dx, dy are701

the number of dimension of X,Y, N = |V| is the number of nodes in the graph.702

Proof of Lemma 4. The time complexity for computing A = X>X + �In 2 Rdx⇥dx is O(Nd2
x),703

the time complexity for computing B = X>Y 2 Rdx⇥dy is O(Ndxdy), the time complexity for704

computing A�1 is O(d3
x), and the time complexity for computing A�1B is O(d2

xdy). Then, the705

total time complexity of computing the closed-form solution is O(Nd2
x + Ndxdy + d2

xdy).706

18

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 10 / 22

GraphEditor

(Unlearning) Step 2. Update the effect of the neighboring nodes of the
deleted nodes on weight parameters:

Let Xupd = X̃[Vupd] denote the subset of matrix X̃ with row indexed
by Vupd.

Let Yupd = Ỹ[Vupd] denote the subset of matrix Ỹ with row indexed
by Vupd.

Then, we update the inversed correlation matrix by

Supd = Srm − SrmX
⊤
upd[I+ XupdSrmX

⊤
upd]

−1XupdSrm, (3)

and update the optimal solution by

Wupd = Wrm+SrmX
⊤
upd[I+XupdSrmX

⊤
upd]

−1(Yupd−XupdWrm). (4)

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 11 / 22

GraphEditor

(Unlearning) Step 2. Update the effect of the neighboring nodes of the
deleted nodes on weight parameters:

B GRAPHEDITOR: details, correctiveness, and time complexity690

In the following, we first introduce the closed-form solution before unlearning in Section B.1, then691

show how to remove and add information that associated with the node features in Section B.2 and692

Section B.3, which is heavily relying on the following lemma.693

Lemma 3 (Sherman–Morrison–Woodbury formula [33]). Suppose X 2 RN⇥N is an invertible694

square matrix and u,v 2 RN are column vectors. Then X + uv> is invertible if and only if695

1 + v>X�1u 6= 0. In this case, we have696

�
X + uv>��1

= X�1 � X�1uv>X�1

1 + v>X�1u
. (3)

The overall GRAPHEDITOR algorithm is summarized in Algorithm 1.697

Algorithm 1 GRAPHEDITOR (Numpy-like pseudo-code)

(Before unlearning) Compute the closed-form solution
S, W = find_W(X, Y)

(GraphEditor) Step 1: Delete information
S, W = remove_data(X[Vrm [Vupd], Y [Vrm [Vupd], S, W)

(GraphEditor) Step 2: Update information

S, W = add_data(X̃[Vupd], Ỹ [Vupd], S, W)

(Optional) Fine-tune W using cross-entropy loss

def find_W(X, Y, reg=0):
XtX = X.T@X + reg*numpy.eye(X.shape[0])
S = numpy.linalg.inv(XtX)
Xty = X.T@Y
W = S@Xty
return S, W

def remove_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I - X@S@X.T)
C = Y - X@W
D = X@S
return S + A@B@D, W - A@B@C

def add_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I + X@S@X.T)
C = Y - X@W
D = X@S
return S - A@B@D, W + A@B@C

B.1 Before unlearning: closed-form solution by find W(X, Y)698

Let X 2 RN⇥dx denote the input node feature matrix and label vector Y 2 RN⇥dy . Then, the699

closed-form solution is as follows700

W? = arg min
W

kXW � Yk2
F + �kWk2

F = (X>X + �In)�1X>Y. (4)

Lemma 4. The time complexity for computing Eq. 4 is O(Nd2
x + Ndxdy + d2

xdy), where dx, dy are701

the number of dimension of X,Y, N = |V| is the number of nodes in the graph.702

Proof of Lemma 4. The time complexity for computing A = X>X + �In 2 Rdx⇥dx is O(Nd2
x),703

the time complexity for computing B = X>Y 2 Rdx⇥dy is O(Ndxdy), the time complexity for704

computing A�1 is O(d3
x), and the time complexity for computing A�1B is O(d2

xdy). Then, the705

total time complexity of computing the closed-form solution is O(Nd2
x + Ndxdy + d2

xdy).706

18

B GRAPHEDITOR: details, correctiveness, and time complexity690

In the following, we first introduce the closed-form solution before unlearning in Section B.1, then691

show how to remove and add information that associated with the node features in Section B.2 and692

Section B.3, which is heavily relying on the following lemma.693

Lemma 3 (Sherman–Morrison–Woodbury formula [33]). Suppose X 2 RN⇥N is an invertible694

square matrix and u,v 2 RN are column vectors. Then X + uv> is invertible if and only if695

1 + v>X�1u 6= 0. In this case, we have696

�
X + uv>��1

= X�1 � X�1uv>X�1

1 + v>X�1u
. (3)

The overall GRAPHEDITOR algorithm is summarized in Algorithm 1.697

Algorithm 1 GRAPHEDITOR (Numpy-like pseudo-code)

(Before unlearning) Compute the closed-form solution
S, W = find_W(X, Y)

(GraphEditor) Step 1: Delete information
S, W = remove_data(X[Vrm [Vupd], Y [Vrm [Vupd], S, W)

(GraphEditor) Step 2: Update information

S, W = add_data(X̃[Vupd], Ỹ [Vupd], S, W)

(Optional) Fine-tune W using cross-entropy loss

def find_W(X, Y, reg=0):
XtX = X.T@X + reg*numpy.eye(X.shape[0])
S = numpy.linalg.inv(XtX)
Xty = X.T@Y
W = S@Xty
return S, W

def remove_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I - X@S@X.T)
C = Y - X@W
D = X@S
return S + A@B@D, W - A@B@C

def add_data(X, Y, S, W):
I = numpy.eye(X.shape[0])
A = S@X.T
B = numpy.linalg.inv(I + X@S@X.T)
C = Y - X@W
D = X@S
return S - A@B@D, W + A@B@C

B.1 Before unlearning: closed-form solution by find W(X, Y)698

Let X 2 RN⇥dx denote the input node feature matrix and label vector Y 2 RN⇥dy . Then, the699

closed-form solution is as follows700

W? = arg min
W

kXW � Yk2
F + �kWk2

F = (X>X + �In)�1X>Y. (4)

Lemma 4. The time complexity for computing Eq. 4 is O(Nd2
x + Ndxdy + d2

xdy), where dx, dy are701

the number of dimension of X,Y, N = |V| is the number of nodes in the graph.702

Proof of Lemma 4. The time complexity for computing A = X>X + �In 2 Rdx⇥dx is O(Nd2
x),703

the time complexity for computing B = X>Y 2 Rdx⇥dy is O(Ndxdy), the time complexity for704

computing A�1 is O(d3
x), and the time complexity for computing A�1B is O(d2

xdy). Then, the705

total time complexity of computing the closed-form solution is O(Nd2
x + Ndxdy + d2

xdy).706

18

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 12 / 22

Evaluation: delete data reply test

(1) add an extra-label category to all nodes and modify the label of each
deleted node to this additional label category. (2) compare the number of
deleted nodes that are predicted as the extra-label category before and
after the unlearning process.

Table: Comparison on the accuracy (before parentheses), number of deleted
nodes that are predicted as the extra-label category before and after unlearning
(inside parentheses), and wall-clock time.

OGB-Arxiv OGB-Products
Method S=10 S=50 S=100 S=10 S=50 S=100

GraphEditor
Before 71.77% (70) 71.77% (70) 71.77% (70) 77.63% (83) 77.63% (83) 77.63% (83)
After 71.78% (0) 71.78% (0) 71.78% (0) 77.63% (0) 77.63% (0) 77.63% (0)
Time 10.8 s 10.9 s 11.9 s 46.6 s 76.9 s 108.3 s

GraphEraser
Before 69.91% (28) 69.91% (28) 69.91% (28) 63.27% (32) 63.27% (32) 63.27% (32)
After 69.90% (0) 69.90% (0) 69.89% (0) 63.27% (0) 63.28% (0) 63.25% (0)
Time 615.9 s 1, 888.1 s 2, 237.8 s 15, 191.4 s 39, 612.5 s 46, 491.4 s

Influence
Before 72.99% (93) 72.99% (93) 72.99% (93) 78.05% (63) 78.05% (63) 78.05% (63)
After 72.89% (53) 72.89% (53) 72.89% (53) 78.05% (19) 78.03% (19) 78.04% (19)
Time 62.1 s 284.7 s 554.8 s 151.7 s 614.2 s 1, 185.7 s

Fisher
Before 72.94% (94) 72.94% (94) 72.94% (94) 78.05% (63) 78.05% (63) 78.05% (63)
After 72.73% (56) 72.70% (55) 72.69% (54) 77.87% (57) 77.86% (57) 77.76% (54)
Time 77.1 s 364.4 s 703.5 s 185.3 s 791.8 s 1, 528.6 s

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 13 / 22

Evaluation: compare to re-trained model

For B ∈ {Vrm,Vtest} we compare the distance of final activations as
Evi∈B

[
∥softmax(xiW

u)− softmax(xiW
r)∥2

]
.

Figure: Comparison on the difference of final activation prediction on deleted
nodes (1st column) and testing nodes (2nd column) and difference of weight
parameters (3rd column).

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 14 / 22

Limitation of GraphEditor

Some limitations:

We have to keep an record on the computation graph of each node,
which requires many engineering effort and storage.
Computation cost is cubic to the affected node size, which grows
exponentially to the number of sampled neighbor.

To solve this ... we propose Projector.

x1

x3

x2

w ∈ span{x1,x2,x3}

wp ∈ span{x1,x2}

(a) (b)
Figure: An illustration on the main idea of Projector. The original weight w
exists inside the subspace defined by node feature vectors {x1, x2, x3}. We can
unlearn x3 and obtain the new weight wp by projecting w on to the subspace
defined without x3.

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 15 / 22

Key observation of Projector

Linear GNN is defined as

min
w

F (w) =
λ

2
∥w∥22 +

1

Vtrain

∑
vi∈Vtrain

fi (w),

fi (w) = log
(
1 + exp(−yiw

⊤hi)
)
,

(5)

and the gradient of Eq. 5 with respect to w, which is computed as

∇F (w) = λw +
1

|Vtrain|
∑

j∈Vtrain

(∑
i∈Vtrain

µi [P
L]ij

)

︸ ︷︷ ︸
∈R

xj ,

µi = −yiσ(−yiw
⊤hi),

(6)

where [PL]ij denote the i-th row j-th column of PL and σ(·) is the sigmoid
function.

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 16 / 22

Orthogonal project to unlearn

Proposition

Let Xremain = {xj | vj ∈ Vremain} denote the stack of all remaining features
of size r = |Vremain| after deletion and α = {αj | vj ∈ Vremain} as the
vectorized coefficients, which could be computed by
α = Xremain(X

⊤
remainXremain)

†w, where † denotes pseudo-inverse.

Then, the unlearned weight parameters by wp = X⊤
remainα.

x1

x3

x2

w ∈ span{x1,x2,x3}

wp ∈ span{x1,x2}

(a) (b)The Pennsylvania State University Graph Representation Unlearning June 12, 2022 17 / 22

Evaluation: feature-label injection test.

The effectiveness of unlearning method is evaluated by comparing the
norm of weight parameters of the extra-feature channel before and after
the unlearning process.

Table: Comparison on the F1-score accuracy (Accuracy), and the norm of
extra-feature weight channel (Weight norm) before unlearning and after
unlearning (denoted as before → after), and wall-clock time (Time) using linear
GNN. “-” stands for cannot generate meaningful results.

Method Metrics Delete 2% nodes Delete 5% nodes Delete 10% nodes

O
G
B
-A

rx
iv

Accuracy (%) 73.39 → 73.32 73.33 → 73.39 73.25 → 73.39
Projector

Weight norm (Time) 19.4 → 0 (0.07 s) 21.7 → 0 (0.07 s) 56.8 → 0 (0.07 s)

Accuracy (%) 73.44 → 73.52 73.42 → 73.48 73.34 → 73.44Projector
(+ adapt diff) Weight norm (Time) 21.0 → 0 (0.07 s) 24.3 → 0 (0.07 s) 25.6 → 0 (0.07 s)

GraphEraser
(×8 subgraphs)

Accuracy (%) 70.67 → 70.66 70.59 → 70.56 70.55 → 70.23
Weight norm (Time) 21.4 → 0 (1, 866× 8 s) 22.3 → 0 (1, 866× 8 s) 30.6 → 0 (1, 866× 8 s)

Influence+
Accuracy (%) 71.68 → 72.49 71.90 → 72.73 70.40 → 72.65
Weight norm (Time) 21.1 → 12.4 (1.1 s) 29.2 → 14.1 (1.1 s) 21.1 → 12.1 (1.1 s)

Fisher+
Accuracy (%) 72.44 → 72.49 72.29 → 72.73 71.71 → 72.65
Weight norm (Time) 21.1 → 12.4 (0.6 s) 29.2 → 14.1 (0.4 s) 35.4 → 15.6 (0.3 s)

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 18 / 22

Evaluation: comparison to re-training from scratch

We measure the difference between normalized weight parameters
∥wu −wp∥2/∥w∥2 and distance between the final activations
Evi∈B[∥σ(w⊤

p hi)− σ(w⊤
u hi)∥2] where B ∈ {Vdelete,Vremain,Vtest}.

Figure: Comparison on the weight difference and model prediction (after the final
layer activation function) before and after the unlearning process.

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 19 / 22

Evaluation: robustness

We study the change of testing accuracy as we progressively increase the
unlearning ratio from 1% to 20%.

Figure: Comparison on the test performance with different number of node to
unlearn.

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 20 / 22

Thanks

More details (including both the paper and its implementation) could be
find my personal webpage by scanning the following QR code.

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 21 / 22

Bourtoule, Lucas et al. “Machine unlearning”. In: 2021 IEEE
Symposium on Security and Privacy (SP). 2021.
Chen, Min et al. “Graph Unlearning”. In: (2021).

Golatkar, Aditya, Alessandro Achille, and Stefano Soatto. “Eternal
sunshine of the spotless net: Selective forgetting in deep networks”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020.
Guo, Chuan et al. “Certified Data Removal from Machine Learning
Models”. In: International Conference on Machine Learning. 2020.

The Pennsylvania State University Graph Representation Unlearning June 12, 2022 22 / 22

	References

