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Overview on research

• During my PhD study, my research focuses on fundamental machine 
learning problems on graph structured data

My Research

Optimization Generalization

Privacy Model Design

Sampling &
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Understand
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Optimization, Generalization, Privacy, Model design

• (Theory) Due to the composite structure of empirical risks, the stochastic gradient is a 
biased estimation of full-batch gradient and can be decomposed into two types of 
variances. We must mitigate both types of variance to obtain faster convergence rate.

Optimization, Generalization, Privacy, Model design

Scaling GNN training onto large graphs by minimal variance sampling1:

(Theory) Gradient of sampling-based GNN training is a bias
estimation of full gradient, which is caused by two types of variance;

(Algorithm) To overcome the bias gradient issue, we propose minimal
variance sampling to reduce the stochastic gradient bias;

Node-wise sampling

�(y1, ŷ1)

<latexit sha1_base64="2YoF0HtOGtB/LPZYgPy/hHfRXiQ=">AAAB/HicbVBNS8NAEN34WetXtEcvi0WoICWRgh6LXjxWsB/QhLDZbtulm03YnQgh1L/ixYMiXv0h3vw3btsctPXBwOO9GWbmhYngGhzn21pb39jc2i7tlHf39g8O7aPjjo5TRVmbxiJWvZBoJrhkbeAgWC9RjEShYN1wcjvzu49MaR7LB8gS5kdkJPmQUwJGCuyKx4SoZYF74Y0J5Nk0cM8Du+rUnTnwKnELUkUFWoH95Q1imkZMAhVE677rJODnRAGngk3LXqpZQuiEjFjfUEkipv18fvwUnxllgIexMiUBz9XfEzmJtM6i0HRGBMZ62ZuJ/3n9FIbXfs5lkgKTdLFomAoMMZ4lgQdcMQoiM4RQxc2tmI6JIhRMXmUTgrv88irpXNbdRr1x36g2b4o4SugEnaIactEVaqI71EJtRFGGntErerOerBfr3fpYtK5ZxUwF/YH1+QOympQp</latexit>

�(y2, ŷ2)

<latexit sha1_base64="2K3dRgY9DnI0J6G50G9Ij+BRCiU=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRahgpSkFPRY9OKxgv2AJoTNdtMu3WzC7kQIof4VLx4U8eoP8ea/cdvmoK0PBh7vzTAzL0g4U2Db30ZpY3Nre6e8W9nbPzg8Mo9PeipOJaFdEvNYDgKsKGeCdoEBp4NEUhwFnPaD6e3c7z9SqVgsHiBLqBfhsWAhIxi05JtVl3Jez/zmpTvBkGczv3nhmzW7YS9grROnIDVUoOObX+4oJmlEBRCOlRo6dgJejiUwwums4qaKJphM8ZgONRU4osrLF8fPrHOtjKwwlroEWAv190SOI6WyKNCdEYaJWvXm4n/eMIXw2suZSFKggiwXhSm3ILbmSVgjJikBnmmCiWT6VotMsMQEdF4VHYKz+vI66TUbTqvRum/V2jdFHGV0is5QHTnoCrXRHeqgLiIoQ8/oFb0ZT8aL8W58LFtLRjFTRX9gfP4Ata6UKw==</latexit>

�(y3, ŷ3)

<latexit sha1_base64="oBnKW3NitJ9mWn25QEp10jKKjsQ=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBEqSElsQZdFNy4r2Ac0IUymN+3QyYOZiRBC/RU3LhRx64e482+ctllo64ELh3Pu5d57/IQzqSzr21hb39jc2i7tlHf39g8OzaPjroxTQaFDYx6Lvk8kcBZBRzHFoZ8IIKHPoedPbmd+7xGEZHH0oLIE3JCMIhYwSpSWPLPiAOe1zGtcOGOi8mzqNc49s2rVrTnwKrELUkUF2p755QxjmoYQKcqJlAPbSpSbE6EY5TAtO6mEhNAJGcFA04iEIN18fvwUn2lliINY6IoUnqu/J3ISSpmFvu4MiRrLZW8m/ucNUhVcuzmLklRBRBeLgpRjFeNZEnjIBFDFM00IFUzfiumYCEKVzqusQ7CXX14l3cu63aw375vV1k0RRwmdoFNUQza6Qi10h9qogyjK0DN6RW/Gk/FivBsfi9Y1o5ipoD8wPn8AuMKULQ==</latexit>

�(y4, ŷ4)

<latexit sha1_base64="0Idvu+gv9B5wv9PHlFFz+xkU2Qs=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSJUkJJIQJdFNy4r2Ac0IUymk3bo5MHMRAih/oobF4q49UPc+TdO2yy09cCFwzn3cu89QcqZVJb1baytb2xubVd2qrt7+weH5tFxVyaZILRDEp6IfoAl5SymHcUUp/1UUBwFnPaCye3M7z1SIVkSP6g8pV6ERzELGcFKS75Zcynnjdx3LtwxVkU+9Z1z36xbTWsOtErsktShRNs3v9xhQrKIxopwLOXAtlLlFVgoRjidVt1M0hSTCR7RgaYxjqj0ivnxU3SmlSEKE6ErVmiu/p4ocCRlHgW6M8JqLJe9mfifN8hUeO0VLE4zRWOyWBRmHKkEzZJAQyYoUTzXBBPB9K2IjLHAROm8qjoEe/nlVdK9bNpO07l36q2bMo4KnMApNMCGK2jBHbShAwRyeIZXeDOejBfj3fhYtK4Z5UwN/sD4/AG71pQv</latexit>

g̃ =
1

|VB|
�

i�VB

��(yi, ŷi)

<latexit sha1_base64="27Hn5TyPSoffkmfNwuAxHFSjsGo="></latexit>

Layer 1

<latexit sha1_base64="zWu06piJ05W+52yHut7rF6R9Hr4=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4koGXQxsIigvmA5Ah7m0myZG/v2N0TjiP+BxsLRWz9PXb+GzfJFZr4YODx3gwz84JYcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOEsWwySIRqU5ANQousWm4EdiJFdIwENgOJjczv/2ISvNIPpg0Rj+kI8mHnFFjpfYdTVE9ef1yxa26c5BV4uWkAjka/fJXbxCxJERpmKBadz03Nn5GleFM4LTUSzTGlE3oCLuWShqi9rP5uVNyZpUBGUbKljRkrv6eyGiodRoGtjOkZqyXvZn4n9dNzPDKz7iME4OSLRYNE0FMRGa/kwFXyIxILaFMcXsrYWOqKDM2oZINwVt+eZW0LqperVq7r1Xq13kcRTiBUzgHDy6hDrfQgCYwmMAzvMKbEzsvzrvzsWgtOPnMMfyB8/kDJTKPcw==</latexit>

Layer (L � 1)

<latexit sha1_base64="zjRANwUbw9iawFl/gfVn8hLmG9o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BItQD5ZECnosevHQQwX7AWkom+2kXbrZDbsbIYT6L7x4UMSrv8ab/8Ztm4O2Phh4vDfDzLwgZlRpx/m2CmvrG5tbxe3Szu7e/kH58KijRCIJtIlgQvYCrIBRDm1NNYNeLAFHAYNuMLmd+d1HkIoK/qDTGPwIjzgNKcHaSF4TpyCfqs0L93xQrjg1Zw57lbg5qaAcrUH5qz8UJImAa8KwUp7rxNrPsNSUMJiW+omCGJMJHoFnKMcRKD+bnzy1z4wytEMhTXFtz9XfExmOlEqjwHRGWI/VsjcT//O8RIfXfkZ5nGjgZLEoTJithT373x5SCUSz1BBMJDW32mSMJSbapFQyIbjLL6+SzmXNrdfq9/VK4yaPo4hO0CmqIhddoQa6Qy3URgQJ9Ixe0ZulrRfr3fpYtBasfOYY/YH1+QP3MJBl</latexit>

Layer L

<latexit sha1_base64="gDA0zJxLCbsDI8h/4vB6gakwBeA=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYhCswp0EtAzaWKSIYD4gOcLeZi5Zsrd37O4JR4j/wcZCEVt/j53/xk1yhSY+GHi8N8PMvCARXBvX/XbW1jc2t7YLO8Xdvf2Dw9LRcUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335EpXksH0yWoB/RoeQhZ9RYqV2nGaqner9UdivuHGSVeDkpQ45Gv/TVG8QsjVAaJqjWXc9NjD+hynAmcFrspRoTysZ0iF1LJY1Q+5P5uVNybpUBCWNlSxoyV39PTGikdRYFtjOiZqSXvZn4n9dNTXjtT7hMUoOSLRaFqSAmJrPfyYArZEZkllCmuL2VsBFVlBmbUNGG4C2/vEpalxWvWqneV8u1mzyOApzCGVyAB1dQgztoQBMYjOEZXuHNSZwX5935WLSuOfnMCfyB8/kDTh6Pjg==</latexit>

H̃(L) = �(L(L)H̃(L�1)W(L))

<latexit sha1_base64="E9skvIb43uZBotK0L2LtBvNxV0s="></latexit>

H̃(2) = �(L(2)H̃(1)W(2))

<latexit sha1_base64="4uk9CrU1Q8Ch4elttQGJOZrBTc4="></latexit>

H̃(1) = �(L(1)XW(1))

<latexit sha1_base64="EvoBdcryTZBmUhZtTK3QLUNcFTQ="></latexit>

…

Stochastic
Gradient 
Variance

Embedding 
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Variance

H(L) = �(LH(L�1)W(L))

<latexit sha1_base64="wKAoSLomnd7Q83YoYmgqh0dazzk=">AAACMHicbVDLSsNAFJ34rPUVdelmsAjtwpJIQTdC0YVddFHBPqCJZTKdtEMnD2YmQgn5JDd+im4UFHHrVzhpo9jWAwOHc85l7j1OyKiQhvGqLS2vrK6t5zbym1vbO7v63n5LBBHHpIkDFvCOgwRh1CdNSSUjnZAT5DmMtJ3RVeq37wkXNPBv5TgktocGPnUpRlJJPf3a8pAcOm5cS+7iYr2UwAtoCTrwUPHHqSezmROz9Ku0s6lSTy8YZWMCuEjMjBRAhkZPf7L6AY484kvMkBBd0wilHSMuKWYkyVuRICHCIzQgXUV95BFhx5ODE3islD50A66eL+FE/TsRI0+IseeoZLqomPdS8T+vG0n33I6pH0aS+Hj6kRsxKAOYtgf7lBMs2VgRhDlVu0I8RBxhqTrOqxLM+ZMXSeu0bFbKlZtKoXqZ1ZEDh+AIFIEJzkAV1EADNAEGD+AZvIF37VF70T60z2l0SctmDsAMtK9vbX+pNQ==</latexit>

H(2) = �(LH(1)W(2))

<latexit sha1_base64="TJQz5ZWD1euF91iLHAZYPrOn9Q4="></latexit>

H(1) = �(LXW(1))

<latexit sha1_base64="pRaiLKPVQYTK7BrD75UoQGlVrgk="></latexit>

…

Full-batch GNNs Sampling based GNNs

g̃ =
1
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�
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��(H̃i, yi)

<latexit sha1_base64="ySgM7I1/p3TrsKHNI1RqvGNdnus="></latexit>

�f(�) =
1

|V|
�

i�V
��(Hi, yi)

<latexit sha1_base64="FwwQ32JvfzeTRa1GQ6QjtICCOa4="></latexit>

H̃(1) = �(L̃(1)XW(1))

<latexit sha1_base64="PYD7e412fdc8K3rG5/CE9M0Nb6A="></latexit>

H̃(2) = �(L̃(2)H̃(1)W(2))

<latexit sha1_base64="COFunAIHtqdVoeE74R8ew3rzCk0="></latexit>

H̃(L) = �(L̃(L)H̃(L�1)W(L))

<latexit sha1_base64="Zjivmz9g907PcW7nA9hXcXcFE0g="></latexit>

1Weilin Cong et al. “Minimal variance sampling with provable guarantees for fast
training of graph neural networks”. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2020.
The Pennsylvania State University Job talk February 28, 2023 4 / 34

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi.
Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks (KDD20)

👈 Forward

👈 Backward!""#$%&'!()

https://arxiv.org/pdf/2006.13866.pdf


Optimization, Generalization, Privacy, Model design

• (Algorithm) A decoupled variance reduction strategy that employs the dynamic 
information during optimization to sample nodes

Optimization, Generalization, Privacy, Model design

Scaling GNN training onto large graphs by minimal variance sampling1:

(Theory) Gradient of sampling-based GNN training is a bias
estimation of full gradient, which is caused by two types of variance;

(Algorithm) To overcome the bias gradient issue, we propose minimal
variance sampling to reduce the stochastic gradient bias;

Node-wise sampling

�(y1, ŷ1)

<latexit sha1_base64="2YoF0HtOGtB/LPZYgPy/hHfRXiQ=">AAAB/HicbVBNS8NAEN34WetXtEcvi0WoICWRgh6LXjxWsB/QhLDZbtulm03YnQgh1L/ixYMiXv0h3vw3btsctPXBwOO9GWbmhYngGhzn21pb39jc2i7tlHf39g8O7aPjjo5TRVmbxiJWvZBoJrhkbeAgWC9RjEShYN1wcjvzu49MaR7LB8gS5kdkJPmQUwJGCuyKx4SoZYF74Y0J5Nk0cM8Du+rUnTnwKnELUkUFWoH95Q1imkZMAhVE677rJODnRAGngk3LXqpZQuiEjFjfUEkipv18fvwUnxllgIexMiUBz9XfEzmJtM6i0HRGBMZ62ZuJ/3n9FIbXfs5lkgKTdLFomAoMMZ4lgQdcMQoiM4RQxc2tmI6JIhRMXmUTgrv88irpXNbdRr1x36g2b4o4SugEnaIactEVaqI71EJtRFGGntErerOerBfr3fpYtK5ZxUwF/YH1+QOympQp</latexit>

�(y2, ŷ2)

<latexit sha1_base64="2K3dRgY9DnI0J6G50G9Ij+BRCiU=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRahgpSkFPRY9OKxgv2AJoTNdtMu3WzC7kQIof4VLx4U8eoP8ea/cdvmoK0PBh7vzTAzL0g4U2Db30ZpY3Nre6e8W9nbPzg8Mo9PeipOJaFdEvNYDgKsKGeCdoEBp4NEUhwFnPaD6e3c7z9SqVgsHiBLqBfhsWAhIxi05JtVl3Jez/zmpTvBkGczv3nhmzW7YS9grROnIDVUoOObX+4oJmlEBRCOlRo6dgJejiUwwums4qaKJphM8ZgONRU4osrLF8fPrHOtjKwwlroEWAv190SOI6WyKNCdEYaJWvXm4n/eMIXw2suZSFKggiwXhSm3ILbmSVgjJikBnmmCiWT6VotMsMQEdF4VHYKz+vI66TUbTqvRum/V2jdFHGV0is5QHTnoCrXRHeqgLiIoQ8/oFb0ZT8aL8W58LFtLRjFTRX9gfP4Ata6UKw==</latexit>

�(y3, ŷ3)

<latexit sha1_base64="oBnKW3NitJ9mWn25QEp10jKKjsQ=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBEqSElsQZdFNy4r2Ac0IUymN+3QyYOZiRBC/RU3LhRx64e482+ctllo64ELh3Pu5d57/IQzqSzr21hb39jc2i7tlHf39g8OzaPjroxTQaFDYx6Lvk8kcBZBRzHFoZ8IIKHPoedPbmd+7xGEZHH0oLIE3JCMIhYwSpSWPLPiAOe1zGtcOGOi8mzqNc49s2rVrTnwKrELUkUF2p755QxjmoYQKcqJlAPbSpSbE6EY5TAtO6mEhNAJGcFA04iEIN18fvwUn2lliINY6IoUnqu/J3ISSpmFvu4MiRrLZW8m/ucNUhVcuzmLklRBRBeLgpRjFeNZEnjIBFDFM00IFUzfiumYCEKVzqusQ7CXX14l3cu63aw375vV1k0RRwmdoFNUQza6Qi10h9qogyjK0DN6RW/Gk/FivBsfi9Y1o5ipoD8wPn8AuMKULQ==</latexit>

�(y4, ŷ4)

<latexit sha1_base64="0Idvu+gv9B5wv9PHlFFz+xkU2Qs=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSJUkJJIQJdFNy4r2Ac0IUymk3bo5MHMRAih/oobF4q49UPc+TdO2yy09cCFwzn3cu89QcqZVJb1baytb2xubVd2qrt7+weH5tFxVyaZILRDEp6IfoAl5SymHcUUp/1UUBwFnPaCye3M7z1SIVkSP6g8pV6ERzELGcFKS75Zcynnjdx3LtwxVkU+9Z1z36xbTWsOtErsktShRNs3v9xhQrKIxopwLOXAtlLlFVgoRjidVt1M0hSTCR7RgaYxjqj0ivnxU3SmlSEKE6ErVmiu/p4ocCRlHgW6M8JqLJe9mfifN8hUeO0VLE4zRWOyWBRmHKkEzZJAQyYoUTzXBBPB9K2IjLHAROm8qjoEe/nlVdK9bNpO07l36q2bMo4KnMApNMCGK2jBHbShAwRyeIZXeDOejBfj3fhYtK4Z5UwN/sD4/AG71pQv</latexit>

g̃ =
1

|VB|
�

i�VB

��(yi, ŷi)

<latexit sha1_base64="27Hn5TyPSoffkmfNwuAxHFSjsGo="></latexit>

Layer 1

<latexit sha1_base64="zWu06piJ05W+52yHut7rF6R9Hr4=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4koGXQxsIigvmA5Ah7m0myZG/v2N0TjiP+BxsLRWz9PXb+GzfJFZr4YODx3gwz84JYcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOEsWwySIRqU5ANQousWm4EdiJFdIwENgOJjczv/2ISvNIPpg0Rj+kI8mHnFFjpfYdTVE9ef1yxa26c5BV4uWkAjka/fJXbxCxJERpmKBadz03Nn5GleFM4LTUSzTGlE3oCLuWShqi9rP5uVNyZpUBGUbKljRkrv6eyGiodRoGtjOkZqyXvZn4n9dNzPDKz7iME4OSLRYNE0FMRGa/kwFXyIxILaFMcXsrYWOqKDM2oZINwVt+eZW0LqperVq7r1Xq13kcRTiBUzgHDy6hDrfQgCYwmMAzvMKbEzsvzrvzsWgtOPnMMfyB8/kDJTKPcw==</latexit>

Layer (L � 1)

<latexit sha1_base64="zjRANwUbw9iawFl/gfVn8hLmG9o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BItQD5ZECnosevHQQwX7AWkom+2kXbrZDbsbIYT6L7x4UMSrv8ab/8Ztm4O2Phh4vDfDzLwgZlRpx/m2CmvrG5tbxe3Szu7e/kH58KijRCIJtIlgQvYCrIBRDm1NNYNeLAFHAYNuMLmd+d1HkIoK/qDTGPwIjzgNKcHaSF4TpyCfqs0L93xQrjg1Zw57lbg5qaAcrUH5qz8UJImAa8KwUp7rxNrPsNSUMJiW+omCGJMJHoFnKMcRKD+bnzy1z4wytEMhTXFtz9XfExmOlEqjwHRGWI/VsjcT//O8RIfXfkZ5nGjgZLEoTJithT373x5SCUSz1BBMJDW32mSMJSbapFQyIbjLL6+SzmXNrdfq9/VK4yaPo4hO0CmqIhddoQa6Qy3URgQJ9Ixe0ZulrRfr3fpYtBasfOYY/YH1+QP3MJBl</latexit>

Layer L

<latexit sha1_base64="gDA0zJxLCbsDI8h/4vB6gakwBeA=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYhCswp0EtAzaWKSIYD4gOcLeZi5Zsrd37O4JR4j/wcZCEVt/j53/xk1yhSY+GHi8N8PMvCARXBvX/XbW1jc2t7YLO8Xdvf2Dw9LRcUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335EpXksH0yWoB/RoeQhZ9RYqV2nGaqner9UdivuHGSVeDkpQ45Gv/TVG8QsjVAaJqjWXc9NjD+hynAmcFrspRoTysZ0iF1LJY1Q+5P5uVNybpUBCWNlSxoyV39PTGikdRYFtjOiZqSXvZn4n9dNTXjtT7hMUoOSLRaFqSAmJrPfyYArZEZkllCmuL2VsBFVlBmbUNGG4C2/vEpalxWvWqneV8u1mzyOApzCGVyAB1dQgztoQBMYjOEZXuHNSZwX5935WLSuOfnMCfyB8/kDTh6Pjg==</latexit>

H̃(L) = �(L(L)H̃(L�1)W(L))

<latexit sha1_base64="E9skvIb43uZBotK0L2LtBvNxV0s="></latexit>

H̃(2) = �(L(2)H̃(1)W(2))

<latexit sha1_base64="4uk9CrU1Q8Ch4elttQGJOZrBTc4="></latexit>

H̃(1) = �(L(1)XW(1))

<latexit sha1_base64="EvoBdcryTZBmUhZtTK3QLUNcFTQ="></latexit>

…

Stochastic
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Variance

H(L) = �(LH(L�1)W(L))

<latexit sha1_base64="wKAoSLomnd7Q83YoYmgqh0dazzk=">AAACMHicbVDLSsNAFJ34rPUVdelmsAjtwpJIQTdC0YVddFHBPqCJZTKdtEMnD2YmQgn5JDd+im4UFHHrVzhpo9jWAwOHc85l7j1OyKiQhvGqLS2vrK6t5zbym1vbO7v63n5LBBHHpIkDFvCOgwRh1CdNSSUjnZAT5DmMtJ3RVeq37wkXNPBv5TgktocGPnUpRlJJPf3a8pAcOm5cS+7iYr2UwAtoCTrwUPHHqSezmROz9Ku0s6lSTy8YZWMCuEjMjBRAhkZPf7L6AY484kvMkBBd0wilHSMuKWYkyVuRICHCIzQgXUV95BFhx5ODE3islD50A66eL+FE/TsRI0+IseeoZLqomPdS8T+vG0n33I6pH0aS+Hj6kRsxKAOYtgf7lBMs2VgRhDlVu0I8RBxhqTrOqxLM+ZMXSeu0bFbKlZtKoXqZ1ZEDh+AIFIEJzkAV1EADNAEGD+AZvIF37VF70T60z2l0SctmDsAMtK9vbX+pNQ==</latexit>

H(2) = �(LH(1)W(2))

<latexit sha1_base64="TJQz5ZWD1euF91iLHAZYPrOn9Q4="></latexit>

H(1) = �(LXW(1))

<latexit sha1_base64="pRaiLKPVQYTK7BrD75UoQGlVrgk="></latexit>

…

Full-batch GNNs Sampling based GNNs

g̃ =
1

|VB|
�

i�VB

��(H̃i, yi)
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Using historical node hidden embeddings

Selecting mini-batch nodes with 
probability proportional to the gradient 
norm computed on each node
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Optimization, Generalization, Privacy, Model design

• Due to bandwidth and memory bottlenecks, sampling-based GNN training has high 
overhead in “pre-processing” and “loading new samples”

• (Left figure) the fraction of computation time (on GPU) is small compared to the 
sampling and data-transfer time (on CPU).

• (Algorithm) Perform node sampling periodically and recycling the sampled nodes to 
mitigate data preparation overhead, as shown in the right figure.

Morteza Ramezani*, Weilin Cong*, Mehrdad Mahdavi, Anand Sivasubramaniam, Mahmut Kandemir.
GCN meets GPU: Decoupling "When to Sample" from "How to Sample” (NeurIPS20)

Optimization, Generalization, Privacy, Model design

Sampling-based GNN training method has high overhead on sampling and
transferring from RAM to GPU memory2

(Algorithm) Perform node sampling periodically and recycle the
sampled nodes to mitigate data preparation overhead.

(Theory) We show that under a mild condition on the gap between
two sampling period, we are able to obtain the same convergence rate
as the underlying sampling method.

as neighborhood explosion. Processing this dependency requires node’s features, a large portion
of estimated features of its neighbors at different hops, along with graph structure to be present in
memory, which impedes the scalability to large graphs. This situation is further exacerbated on GPUs
where local memory is in general more scarce compared to CPUs. For instance, the memory capacity
on a very recent GPU card, such as NVIDIA Tesla V100, is at most 32 GB, while a scale-free graph
with 50 million nodes can take up to 350 GB.
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Figure 1: Timeline of executing vanilla
GCN vs proposed LAZYGCN on a CPU-
GPU system with two processes. The num-
bered boxes indicate the time spent for
each mini-batch at different stages.

One way of alleviating this memory demand is to em-
ploy sampling – an effective strategy that practitioners
often use in training GCNs. The aim of sampling-based
training is to aggregate the hidden features of only a
sampled subset of neighbors at each layer. A number of
recent studies have introduced and evaluated different
sampling methods such as nodewise sampling [13, 29],
layerwise sampling [3, 32], and subgraph sampling
[30, 4]. In practice, sampling from a large graph re-
quires many random accesses to the memory, which
inherently do not perform well in GPUs, which are de-
signed for regular parallel accesses. A heterogeneous
system comprising CPUs and GPUs allows some trade-
offs between these two – CPUs are more capable of
performing random memory access compared to GPUs,
but do not have the high degree of parallelism offered
by the latter [31, 18, 20]. However, transferring large
volumes of data between the two (CPU and GPU) can
further deteriorate the performance.

For example, as shown in the top half of Figure 1, in training a mini-batch GCN on a heterogeneous
system, the majority of the time is spent on sampling nodes using CPU and transferring the sampled
nodes from CPU to GPU, rather than the actual computation itself. One viable option to reduce the
sampling overhead is to assign more CPU resources; however, this adds computation overhead on
CPU and storing the intermediate results of a large number of samplers can cause memory contention.
It is worth mentioning that sampling time increases significantly as the graph size grows, while the
transfer and computation time on GPUs remain the same, given the limited GPU capacity. Also,
a solution to reduce the transfer time is to use smaller mini-batches and leave enough free space
on GPU memory for next mini-batch data (i.e. overlap data transfer of next batch with compute of
previous batch). However, a smaller mini-batch size in GCN is not preferable as it leads to under
utilization of GPU and may also make the algorithm diverge if selected aggressively small.

Motivated by these observations, the key question we investigate in this paper is: for a given sampling
strategy, can we reduce the sampling frequency to leverage the underlying hardware capabilities
without compromising accuracy? In this work, we develop LAZYGCN, a general yet efficient
framework that is suitable for heterogeneous settings to train large scale GCNs. As shown in the
bottom half of Figure 1, unlike vanilla GCN training methods, where a new sample for each iteration
is prepared on CPU and transferred to GPU, LAZYGCN performs periodic sampling on CPU and
transfers it to GPU. Then, instead of sampling new data points on CPU at every iteration, for a
predetermined number of iterations, LAZYGCN effectively recycles the already-sampled nodes on
the GPU, reducing both sampling and data transfer overheads. During recycling, a variance reduction
schema is employed to reduce the influence of sampling. While previously proposed techniques such
as mini-batch persistency [11] and data echoing [5] aim at incorporating data reuse for training, the
main focus of those works are standard deep neural networks, where input dependency is insignificant
compared to GCN. In addition, none of these works provide a proper analysis on the convergence of
data reuse in the training of deep neural network.

We provide a theoretical analysis that motivates our algorithm, and characterizes its speed of conver-
gence. Indeed, we show that under a mild condition on the recycling size, by reducing the variance of
inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We
also conduct extensive numerical experiments on different large-scale graph datasets and different
sampling methods to corroborate our theoretical findings, and demonstrate the practical efficacy of
the proposed algorithm over competitive baselines. Overall, our empirical results demonstrate that
LAZYGCN can significantly reduce the number of sampling steps and yield superior speedup without
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as neighborhood explosion. Processing this dependency requires node’s features, a large portion
of estimated features of its neighbors at different hops, along with graph structure to be present in
memory, which impedes the scalability to large graphs. This situation is further exacerbated on GPUs
where local memory is in general more scarce compared to CPUs. For instance, the memory capacity
on a very recent GPU card, such as NVIDIA Tesla V100, is at most 32 GB, while a scale-free graph
with 50 million nodes can take up to 350 GB.
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One way of alleviating this memory demand is to em-
ploy sampling – an effective strategy that practitioners
often use in training GCNs. The aim of sampling-based
training is to aggregate the hidden features of only a
sampled subset of neighbors at each layer. A number of
recent studies have introduced and evaluated different
sampling methods such as nodewise sampling [13, 29],
layerwise sampling [3, 32], and subgraph sampling
[30, 4]. In practice, sampling from a large graph re-
quires many random accesses to the memory, which
inherently do not perform well in GPUs, which are de-
signed for regular parallel accesses. A heterogeneous
system comprising CPUs and GPUs allows some trade-
offs between these two – CPUs are more capable of
performing random memory access compared to GPUs,
but do not have the high degree of parallelism offered
by the latter [31, 18, 20]. However, transferring large
volumes of data between the two (CPU and GPU) can
further deteriorate the performance.

For example, as shown in the top half of Figure 1, in training a mini-batch GCN on a heterogeneous
system, the majority of the time is spent on sampling nodes using CPU and transferring the sampled
nodes from CPU to GPU, rather than the actual computation itself. One viable option to reduce the
sampling overhead is to assign more CPU resources; however, this adds computation overhead on
CPU and storing the intermediate results of a large number of samplers can cause memory contention.
It is worth mentioning that sampling time increases significantly as the graph size grows, while the
transfer and computation time on GPUs remain the same, given the limited GPU capacity. Also,
a solution to reduce the transfer time is to use smaller mini-batches and leave enough free space
on GPU memory for next mini-batch data (i.e. overlap data transfer of next batch with compute of
previous batch). However, a smaller mini-batch size in GCN is not preferable as it leads to under
utilization of GPU and may also make the algorithm diverge if selected aggressively small.

Motivated by these observations, the key question we investigate in this paper is: for a given sampling
strategy, can we reduce the sampling frequency to leverage the underlying hardware capabilities
without compromising accuracy? In this work, we develop LAZYGCN, a general yet efficient
framework that is suitable for heterogeneous settings to train large scale GCNs. As shown in the
bottom half of Figure 1, unlike vanilla GCN training methods, where a new sample for each iteration
is prepared on CPU and transferred to GPU, LAZYGCN performs periodic sampling on CPU and
transfers it to GPU. Then, instead of sampling new data points on CPU at every iteration, for a
predetermined number of iterations, LAZYGCN effectively recycles the already-sampled nodes on
the GPU, reducing both sampling and data transfer overheads. During recycling, a variance reduction
schema is employed to reduce the influence of sampling. While previously proposed techniques such
as mini-batch persistency [11] and data echoing [5] aim at incorporating data reuse for training, the
main focus of those works are standard deep neural networks, where input dependency is insignificant
compared to GCN. In addition, none of these works provide a proper analysis on the convergence of
data reuse in the training of deep neural network.

We provide a theoretical analysis that motivates our algorithm, and characterizes its speed of conver-
gence. Indeed, we show that under a mild condition on the recycling size, by reducing the variance of
inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We
also conduct extensive numerical experiments on different large-scale graph datasets and different
sampling methods to corroborate our theoretical findings, and demonstrate the practical efficacy of
the proposed algorithm over competitive baselines. Overall, our empirical results demonstrate that
LAZYGCN can significantly reduce the number of sampling steps and yield superior speedup without
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of estimated features of its neighbors at different hops, along with graph structure to be present in
memory, which impedes the scalability to large graphs. This situation is further exacerbated on GPUs
where local memory is in general more scarce compared to CPUs. For instance, the memory capacity
on a very recent GPU card, such as NVIDIA Tesla V100, is at most 32 GB, while a scale-free graph
with 50 million nodes can take up to 350 GB.
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One way of alleviating this memory demand is to em-
ploy sampling – an effective strategy that practitioners
often use in training GCNs. The aim of sampling-based
training is to aggregate the hidden features of only a
sampled subset of neighbors at each layer. A number of
recent studies have introduced and evaluated different
sampling methods such as nodewise sampling [13, 29],
layerwise sampling [3, 32], and subgraph sampling
[30, 4]. In practice, sampling from a large graph re-
quires many random accesses to the memory, which
inherently do not perform well in GPUs, which are de-
signed for regular parallel accesses. A heterogeneous
system comprising CPUs and GPUs allows some trade-
offs between these two – CPUs are more capable of
performing random memory access compared to GPUs,
but do not have the high degree of parallelism offered
by the latter [31, 18, 20]. However, transferring large
volumes of data between the two (CPU and GPU) can
further deteriorate the performance.

For example, as shown in the top half of Figure 1, in training a mini-batch GCN on a heterogeneous
system, the majority of the time is spent on sampling nodes using CPU and transferring the sampled
nodes from CPU to GPU, rather than the actual computation itself. One viable option to reduce the
sampling overhead is to assign more CPU resources; however, this adds computation overhead on
CPU and storing the intermediate results of a large number of samplers can cause memory contention.
It is worth mentioning that sampling time increases significantly as the graph size grows, while the
transfer and computation time on GPUs remain the same, given the limited GPU capacity. Also,
a solution to reduce the transfer time is to use smaller mini-batches and leave enough free space
on GPU memory for next mini-batch data (i.e. overlap data transfer of next batch with compute of
previous batch). However, a smaller mini-batch size in GCN is not preferable as it leads to under
utilization of GPU and may also make the algorithm diverge if selected aggressively small.

Motivated by these observations, the key question we investigate in this paper is: for a given sampling
strategy, can we reduce the sampling frequency to leverage the underlying hardware capabilities
without compromising accuracy? In this work, we develop LAZYGCN, a general yet efficient
framework that is suitable for heterogeneous settings to train large scale GCNs. As shown in the
bottom half of Figure 1, unlike vanilla GCN training methods, where a new sample for each iteration
is prepared on CPU and transferred to GPU, LAZYGCN performs periodic sampling on CPU and
transfers it to GPU. Then, instead of sampling new data points on CPU at every iteration, for a
predetermined number of iterations, LAZYGCN effectively recycles the already-sampled nodes on
the GPU, reducing both sampling and data transfer overheads. During recycling, a variance reduction
schema is employed to reduce the influence of sampling. While previously proposed techniques such
as mini-batch persistency [11] and data echoing [5] aim at incorporating data reuse for training, the
main focus of those works are standard deep neural networks, where input dependency is insignificant
compared to GCN. In addition, none of these works provide a proper analysis on the convergence of
data reuse in the training of deep neural network.

We provide a theoretical analysis that motivates our algorithm, and characterizes its speed of conver-
gence. Indeed, we show that under a mild condition on the recycling size, by reducing the variance of
inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We
also conduct extensive numerical experiments on different large-scale graph datasets and different
sampling methods to corroborate our theoretical findings, and demonstrate the practical efficacy of
the proposed algorithm over competitive baselines. Overall, our empirical results demonstrate that
LAZYGCN can significantly reduce the number of sampling steps and yield superior speedup without
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of estimated features of its neighbors at different hops, along with graph structure to be present in
memory, which impedes the scalability to large graphs. This situation is further exacerbated on GPUs
where local memory is in general more scarce compared to CPUs. For instance, the memory capacity
on a very recent GPU card, such as NVIDIA Tesla V100, is at most 32 GB, while a scale-free graph
with 50 million nodes can take up to 350 GB.
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GCN vs proposed LAZYGCN on a CPU-
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One way of alleviating this memory demand is to em-
ploy sampling – an effective strategy that practitioners
often use in training GCNs. The aim of sampling-based
training is to aggregate the hidden features of only a
sampled subset of neighbors at each layer. A number of
recent studies have introduced and evaluated different
sampling methods such as nodewise sampling [13, 29],
layerwise sampling [3, 32], and subgraph sampling
[30, 4]. In practice, sampling from a large graph re-
quires many random accesses to the memory, which
inherently do not perform well in GPUs, which are de-
signed for regular parallel accesses. A heterogeneous
system comprising CPUs and GPUs allows some trade-
offs between these two – CPUs are more capable of
performing random memory access compared to GPUs,
but do not have the high degree of parallelism offered
by the latter [31, 18, 20]. However, transferring large
volumes of data between the two (CPU and GPU) can
further deteriorate the performance.

For example, as shown in the top half of Figure 1, in training a mini-batch GCN on a heterogeneous
system, the majority of the time is spent on sampling nodes using CPU and transferring the sampled
nodes from CPU to GPU, rather than the actual computation itself. One viable option to reduce the
sampling overhead is to assign more CPU resources; however, this adds computation overhead on
CPU and storing the intermediate results of a large number of samplers can cause memory contention.
It is worth mentioning that sampling time increases significantly as the graph size grows, while the
transfer and computation time on GPUs remain the same, given the limited GPU capacity. Also,
a solution to reduce the transfer time is to use smaller mini-batches and leave enough free space
on GPU memory for next mini-batch data (i.e. overlap data transfer of next batch with compute of
previous batch). However, a smaller mini-batch size in GCN is not preferable as it leads to under
utilization of GPU and may also make the algorithm diverge if selected aggressively small.

Motivated by these observations, the key question we investigate in this paper is: for a given sampling
strategy, can we reduce the sampling frequency to leverage the underlying hardware capabilities
without compromising accuracy? In this work, we develop LAZYGCN, a general yet efficient
framework that is suitable for heterogeneous settings to train large scale GCNs. As shown in the
bottom half of Figure 1, unlike vanilla GCN training methods, where a new sample for each iteration
is prepared on CPU and transferred to GPU, LAZYGCN performs periodic sampling on CPU and
transfers it to GPU. Then, instead of sampling new data points on CPU at every iteration, for a
predetermined number of iterations, LAZYGCN effectively recycles the already-sampled nodes on
the GPU, reducing both sampling and data transfer overheads. During recycling, a variance reduction
schema is employed to reduce the influence of sampling. While previously proposed techniques such
as mini-batch persistency [11] and data echoing [5] aim at incorporating data reuse for training, the
main focus of those works are standard deep neural networks, where input dependency is insignificant
compared to GCN. In addition, none of these works provide a proper analysis on the convergence of
data reuse in the training of deep neural network.

We provide a theoretical analysis that motivates our algorithm, and characterizes its speed of conver-
gence. Indeed, we show that under a mild condition on the recycling size, by reducing the variance of
inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We
also conduct extensive numerical experiments on different large-scale graph datasets and different
sampling methods to corroborate our theoretical findings, and demonstrate the practical efficacy of
the proposed algorithm over competitive baselines. Overall, our empirical results demonstrate that
LAZYGCN can significantly reduce the number of sampling steps and yield superior speedup without
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The Pennsylvania State University Job talk February 28, 2023 5 / 34

👉
recycle

https://proceedings.neurips.cc/paper/2020/hash/d714d2c5a796d5814c565d78dd16188d-Abstract.html


Optimization, Generalization, Privacy, Model design

• (Theory) We show that under mild conditions on the gap between two sampling periods, 
by reducing the variance of inner layer sampling, the same convergence rate as the 
underlying sampling method can be achieved.

• “Reducing the variance of inner layer sampling” refer to fixing the inner layer nodes while 
recycling to those sampled at the beginning of recycling stage, but only sample the last 
layer nodes

Morteza Ramezani*, Weilin Cong*, Mehrdad Mahdavi, Anand Sivasubramaniam, Mahmut Kandemir.
GCN meets GPU: Decoupling "When to Sample" from "How to Sample” (NeurIPS20)

Optimization, Generalization, Privacy, Model design

Sampling-based GNN training method has high overhead on sampling and
transferring from RAM to GPU memory2

(Algorithm) Perform node sampling periodically and recycle the
sampled nodes to mitigate data preparation overhead.

(Theory) We show that under a mild condition on the gap between
two sampling period, we are able to obtain the same convergence rate
as the underlying sampling method.

as neighborhood explosion. Processing this dependency requires node’s features, a large portion
of estimated features of its neighbors at different hops, along with graph structure to be present in
memory, which impedes the scalability to large graphs. This situation is further exacerbated on GPUs
where local memory is in general more scarce compared to CPUs. For instance, the memory capacity
on a very recent GPU card, such as NVIDIA Tesla V100, is at most 32 GB, while a scale-free graph
with 50 million nodes can take up to 350 GB.
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Figure 1: Timeline of executing vanilla
GCN vs proposed LAZYGCN on a CPU-
GPU system with two processes. The num-
bered boxes indicate the time spent for
each mini-batch at different stages.

One way of alleviating this memory demand is to em-
ploy sampling – an effective strategy that practitioners
often use in training GCNs. The aim of sampling-based
training is to aggregate the hidden features of only a
sampled subset of neighbors at each layer. A number of
recent studies have introduced and evaluated different
sampling methods such as nodewise sampling [13, 29],
layerwise sampling [3, 32], and subgraph sampling
[30, 4]. In practice, sampling from a large graph re-
quires many random accesses to the memory, which
inherently do not perform well in GPUs, which are de-
signed for regular parallel accesses. A heterogeneous
system comprising CPUs and GPUs allows some trade-
offs between these two – CPUs are more capable of
performing random memory access compared to GPUs,
but do not have the high degree of parallelism offered
by the latter [31, 18, 20]. However, transferring large
volumes of data between the two (CPU and GPU) can
further deteriorate the performance.

For example, as shown in the top half of Figure 1, in training a mini-batch GCN on a heterogeneous
system, the majority of the time is spent on sampling nodes using CPU and transferring the sampled
nodes from CPU to GPU, rather than the actual computation itself. One viable option to reduce the
sampling overhead is to assign more CPU resources; however, this adds computation overhead on
CPU and storing the intermediate results of a large number of samplers can cause memory contention.
It is worth mentioning that sampling time increases significantly as the graph size grows, while the
transfer and computation time on GPUs remain the same, given the limited GPU capacity. Also,
a solution to reduce the transfer time is to use smaller mini-batches and leave enough free space
on GPU memory for next mini-batch data (i.e. overlap data transfer of next batch with compute of
previous batch). However, a smaller mini-batch size in GCN is not preferable as it leads to under
utilization of GPU and may also make the algorithm diverge if selected aggressively small.

Motivated by these observations, the key question we investigate in this paper is: for a given sampling
strategy, can we reduce the sampling frequency to leverage the underlying hardware capabilities
without compromising accuracy? In this work, we develop LAZYGCN, a general yet efficient
framework that is suitable for heterogeneous settings to train large scale GCNs. As shown in the
bottom half of Figure 1, unlike vanilla GCN training methods, where a new sample for each iteration
is prepared on CPU and transferred to GPU, LAZYGCN performs periodic sampling on CPU and
transfers it to GPU. Then, instead of sampling new data points on CPU at every iteration, for a
predetermined number of iterations, LAZYGCN effectively recycles the already-sampled nodes on
the GPU, reducing both sampling and data transfer overheads. During recycling, a variance reduction
schema is employed to reduce the influence of sampling. While previously proposed techniques such
as mini-batch persistency [11] and data echoing [5] aim at incorporating data reuse for training, the
main focus of those works are standard deep neural networks, where input dependency is insignificant
compared to GCN. In addition, none of these works provide a proper analysis on the convergence of
data reuse in the training of deep neural network.

We provide a theoretical analysis that motivates our algorithm, and characterizes its speed of conver-
gence. Indeed, we show that under a mild condition on the recycling size, by reducing the variance of
inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We
also conduct extensive numerical experiments on different large-scale graph datasets and different
sampling methods to corroborate our theoretical findings, and demonstrate the practical efficacy of
the proposed algorithm over competitive baselines. Overall, our empirical results demonstrate that
LAZYGCN can significantly reduce the number of sampling steps and yield superior speedup without
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of estimated features of its neighbors at different hops, along with graph structure to be present in
memory, which impedes the scalability to large graphs. This situation is further exacerbated on GPUs
where local memory is in general more scarce compared to CPUs. For instance, the memory capacity
on a very recent GPU card, such as NVIDIA Tesla V100, is at most 32 GB, while a scale-free graph
with 50 million nodes can take up to 350 GB.
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One way of alleviating this memory demand is to em-
ploy sampling – an effective strategy that practitioners
often use in training GCNs. The aim of sampling-based
training is to aggregate the hidden features of only a
sampled subset of neighbors at each layer. A number of
recent studies have introduced and evaluated different
sampling methods such as nodewise sampling [13, 29],
layerwise sampling [3, 32], and subgraph sampling
[30, 4]. In practice, sampling from a large graph re-
quires many random accesses to the memory, which
inherently do not perform well in GPUs, which are de-
signed for regular parallel accesses. A heterogeneous
system comprising CPUs and GPUs allows some trade-
offs between these two – CPUs are more capable of
performing random memory access compared to GPUs,
but do not have the high degree of parallelism offered
by the latter [31, 18, 20]. However, transferring large
volumes of data between the two (CPU and GPU) can
further deteriorate the performance.

For example, as shown in the top half of Figure 1, in training a mini-batch GCN on a heterogeneous
system, the majority of the time is spent on sampling nodes using CPU and transferring the sampled
nodes from CPU to GPU, rather than the actual computation itself. One viable option to reduce the
sampling overhead is to assign more CPU resources; however, this adds computation overhead on
CPU and storing the intermediate results of a large number of samplers can cause memory contention.
It is worth mentioning that sampling time increases significantly as the graph size grows, while the
transfer and computation time on GPUs remain the same, given the limited GPU capacity. Also,
a solution to reduce the transfer time is to use smaller mini-batches and leave enough free space
on GPU memory for next mini-batch data (i.e. overlap data transfer of next batch with compute of
previous batch). However, a smaller mini-batch size in GCN is not preferable as it leads to under
utilization of GPU and may also make the algorithm diverge if selected aggressively small.

Motivated by these observations, the key question we investigate in this paper is: for a given sampling
strategy, can we reduce the sampling frequency to leverage the underlying hardware capabilities
without compromising accuracy? In this work, we develop LAZYGCN, a general yet efficient
framework that is suitable for heterogeneous settings to train large scale GCNs. As shown in the
bottom half of Figure 1, unlike vanilla GCN training methods, where a new sample for each iteration
is prepared on CPU and transferred to GPU, LAZYGCN performs periodic sampling on CPU and
transfers it to GPU. Then, instead of sampling new data points on CPU at every iteration, for a
predetermined number of iterations, LAZYGCN effectively recycles the already-sampled nodes on
the GPU, reducing both sampling and data transfer overheads. During recycling, a variance reduction
schema is employed to reduce the influence of sampling. While previously proposed techniques such
as mini-batch persistency [11] and data echoing [5] aim at incorporating data reuse for training, the
main focus of those works are standard deep neural networks, where input dependency is insignificant
compared to GCN. In addition, none of these works provide a proper analysis on the convergence of
data reuse in the training of deep neural network.

We provide a theoretical analysis that motivates our algorithm, and characterizes its speed of conver-
gence. Indeed, we show that under a mild condition on the recycling size, by reducing the variance of
inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We
also conduct extensive numerical experiments on different large-scale graph datasets and different
sampling methods to corroborate our theoretical findings, and demonstrate the practical efficacy of
the proposed algorithm over competitive baselines. Overall, our empirical results demonstrate that
LAZYGCN can significantly reduce the number of sampling steps and yield superior speedup without
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as neighborhood explosion. Processing this dependency requires node’s features, a large portion
of estimated features of its neighbors at different hops, along with graph structure to be present in
memory, which impedes the scalability to large graphs. This situation is further exacerbated on GPUs
where local memory is in general more scarce compared to CPUs. For instance, the memory capacity
on a very recent GPU card, such as NVIDIA Tesla V100, is at most 32 GB, while a scale-free graph
with 50 million nodes can take up to 350 GB.
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Figure 1: Timeline of executing vanilla
GCN vs proposed LAZYGCN on a CPU-
GPU system with two processes. The num-
bered boxes indicate the time spent for
each mini-batch at different stages.

One way of alleviating this memory demand is to em-
ploy sampling – an effective strategy that practitioners
often use in training GCNs. The aim of sampling-based
training is to aggregate the hidden features of only a
sampled subset of neighbors at each layer. A number of
recent studies have introduced and evaluated different
sampling methods such as nodewise sampling [13, 29],
layerwise sampling [3, 32], and subgraph sampling
[30, 4]. In practice, sampling from a large graph re-
quires many random accesses to the memory, which
inherently do not perform well in GPUs, which are de-
signed for regular parallel accesses. A heterogeneous
system comprising CPUs and GPUs allows some trade-
offs between these two – CPUs are more capable of
performing random memory access compared to GPUs,
but do not have the high degree of parallelism offered
by the latter [31, 18, 20]. However, transferring large
volumes of data between the two (CPU and GPU) can
further deteriorate the performance.

For example, as shown in the top half of Figure 1, in training a mini-batch GCN on a heterogeneous
system, the majority of the time is spent on sampling nodes using CPU and transferring the sampled
nodes from CPU to GPU, rather than the actual computation itself. One viable option to reduce the
sampling overhead is to assign more CPU resources; however, this adds computation overhead on
CPU and storing the intermediate results of a large number of samplers can cause memory contention.
It is worth mentioning that sampling time increases significantly as the graph size grows, while the
transfer and computation time on GPUs remain the same, given the limited GPU capacity. Also,
a solution to reduce the transfer time is to use smaller mini-batches and leave enough free space
on GPU memory for next mini-batch data (i.e. overlap data transfer of next batch with compute of
previous batch). However, a smaller mini-batch size in GCN is not preferable as it leads to under
utilization of GPU and may also make the algorithm diverge if selected aggressively small.

Motivated by these observations, the key question we investigate in this paper is: for a given sampling
strategy, can we reduce the sampling frequency to leverage the underlying hardware capabilities
without compromising accuracy? In this work, we develop LAZYGCN, a general yet efficient
framework that is suitable for heterogeneous settings to train large scale GCNs. As shown in the
bottom half of Figure 1, unlike vanilla GCN training methods, where a new sample for each iteration
is prepared on CPU and transferred to GPU, LAZYGCN performs periodic sampling on CPU and
transfers it to GPU. Then, instead of sampling new data points on CPU at every iteration, for a
predetermined number of iterations, LAZYGCN effectively recycles the already-sampled nodes on
the GPU, reducing both sampling and data transfer overheads. During recycling, a variance reduction
schema is employed to reduce the influence of sampling. While previously proposed techniques such
as mini-batch persistency [11] and data echoing [5] aim at incorporating data reuse for training, the
main focus of those works are standard deep neural networks, where input dependency is insignificant
compared to GCN. In addition, none of these works provide a proper analysis on the convergence of
data reuse in the training of deep neural network.

We provide a theoretical analysis that motivates our algorithm, and characterizes its speed of conver-
gence. Indeed, we show that under a mild condition on the recycling size, by reducing the variance of
inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We
also conduct extensive numerical experiments on different large-scale graph datasets and different
sampling methods to corroborate our theoretical findings, and demonstrate the practical efficacy of
the proposed algorithm over competitive baselines. Overall, our empirical results demonstrate that
LAZYGCN can significantly reduce the number of sampling steps and yield superior speedup without
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It is worth mentioning that sampling time increases significantly as the graph size grows, while the
transfer and computation time on GPUs remain the same, given the limited GPU capacity. Also,
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Motivated by these observations, the key question we investigate in this paper is: for a given sampling
strategy, can we reduce the sampling frequency to leverage the underlying hardware capabilities
without compromising accuracy? In this work, we develop LAZYGCN, a general yet efficient
framework that is suitable for heterogeneous settings to train large scale GCNs. As shown in the
bottom half of Figure 1, unlike vanilla GCN training methods, where a new sample for each iteration
is prepared on CPU and transferred to GPU, LAZYGCN performs periodic sampling on CPU and
transfers it to GPU. Then, instead of sampling new data points on CPU at every iteration, for a
predetermined number of iterations, LAZYGCN effectively recycles the already-sampled nodes on
the GPU, reducing both sampling and data transfer overheads. During recycling, a variance reduction
schema is employed to reduce the influence of sampling. While previously proposed techniques such
as mini-batch persistency [11] and data echoing [5] aim at incorporating data reuse for training, the
main focus of those works are standard deep neural networks, where input dependency is insignificant
compared to GCN. In addition, none of these works provide a proper analysis on the convergence of
data reuse in the training of deep neural network.

We provide a theoretical analysis that motivates our algorithm, and characterizes its speed of conver-
gence. Indeed, we show that under a mild condition on the recycling size, by reducing the variance of
inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We
also conduct extensive numerical experiments on different large-scale graph datasets and different
sampling methods to corroborate our theoretical findings, and demonstrate the practical efficacy of
the proposed algorithm over competitive baselines. Overall, our empirical results demonstrate that
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2Morteza Ramezani* et al. “Gcn meets gpu: Decoupling “when to sample” from
“how to sample””. In: Advances in Neural Information Processing Systems (2020).
The Pennsylvania State University Job talk February 28, 2023 5 / 34

Cannot be too large

https://proceedings.neurips.cc/paper/2020/hash/d714d2c5a796d5814c565d78dd16188d-Abstract.html


Optimization, Generalization, Privacy, Model design

Scaling GNN training onto large graphs by distributed training3:
(Theory) Ignoring the edges that spanning subgraphs ! the biased
gradient issue ! model su↵er from a residual error for convergence
and generalize poorly on original graph
(Algorithm) We propose to locally train the model on each local
machine for several epochs, then perform server correction to mitigate
the gradient bias issue.

Local machine 1

Local machine 2

Local machine 3

Local machine 4

3Morteza Ramezani* et al. “Learn Locally, Correct Globally: A Distributed Algorithm
for Training Graph Neural Networks”. In: International Conference on Learning
Representations. 2022.
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• Partitioning the original graph into multiple subgraphs, each subgraph is trained on 
single local machine with periodic parameter averaging. However, graph partitioning will 
lead to subgraphs with edges spanning subgraphs. 

• Consider them edge iterations? ☹
• Ignoring these spanning subgraph edges? ☹

Morteza Ramezani*, Weilin Cong*, Mehrdad Mahdavi, Mahmut Kandemir, Anand Sivasubramaniam.
Learn Locally, Correct Globally: A Distributed Algorithm for Training Graph Neural Networks. (ICLR22)

Green: single machine
Red: considering all spanning edges
Blue: ignore all spanning edges

https://openreview.net/forum?id=FndDxSz3LxQ


Optimization, Generalization, Privacy, Model design

• (Algorithm) We propose to locally train the model on each local machine for several 
epochs, then perform server correction (i.e., refine the model) to mitigate the gradient 
bias issue.

• (Theory) Ignoring the edges that spanning subgraphs will suffer from an irreducible 
residual error. This error can be eliminated by server correction.

Morteza Ramezani*, Weilin Cong*, Mehrdad Mahdavi, Mahmut Kandemir, Anand Sivasubramaniam.
Learn Locally, Correct Globally: A Distributed Algorithm for Training Graph Neural Networks. (ICLR22)

Local training
Send to server

Weight average
Refine the model
Send to local

Receive from server
Local training
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Overview on research

• During my PhD study, my research focuses on fundamental machine 
learning problems on graph structured data

My Research

Optimization Generalization
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• Performance degradation in deeper GNN is commonly explained by “over-smoothing ”。
• Over-smoothing: The node representation becomes indistinguishable after too many 

graph convolutional layers. As a result, the classifier has difficulty assigning the correct 
label for each node if over-smoothing happens.

• However, we argue that ”over-smoothing” not necessarily happen in practice.

Weilin Cong, Morteza Ramezani, Mehrdad Mahdavi. On Provable Benefits of Depth in Training Graph Convolutional Networks. (NeurIPS21)

Optimization, Generalization, Privacy, Model design

Performance degradation issue in deeper GNN is commonly explained by
“over-smoothing”. However, we argue that “over-smoothing” not
necessarily happen in practice4

(Theory) We review existing “over-smoothing” analysis and found
their analysis are based on unrealistic assumptions:

(Theory) We explain the performance degradation issue from
generalization perspective. Then verify them empirically.

Use DGL’s official implementations

Remove Dropout

Remove weight decay (regularization)

4Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. “On provable benefits of
depth in training graph convolutional networks”. In: Advances in Neural Information
Processing Systems (2021).
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• Review theoretical analysis on over-smoothing papers, we mathematically show that over-
smoothing is mainly an artifact of theoretical analysis and the assumptions made in 
analysis  that never hold in practice;

• The “assumptions” such as:
• GNN is linear with single weight matrix but many graph convolutions
• (singular value of weight parameters) × (singular value of graph Laplacian) < 1

• We provide different view by analysis the impact of GNN structure on the generalization. 
We use uniform stability for theoretical analysis: APPNP ≤ GCNII ≤ GCN ≤ ResGCN

Weilin Cong, Morteza Ramezani, Mehrdad Mahdavi. On Provable Benefits of Depth in Training Graph Convolutional Networks. (NeurIPS21)

Figure 4: Comparison of generalization error on synthetic dataset. The curve early stopped at the
largest training accuracy iteration.

steps at the beginning of training. Throughout the training, DGCN gradually adjusts the weight to
leverage more useful large receptive field information.

• (Learnable �`) A learnable weight �` 2 [0, 1] is assigned to each weight matrix to balance the
expressiveness with model complexity, which guarantees a better generalization ability.

Theorem 5. Let suppose ↵` and �` are pre-selected and fixed during training. We say DGCN is
✏DGCN-uniformly stable with ✏DGCN =

2⌘⇢fGf

m

PT
t=1(1 + ⌘Lf )t�1 where

⇢f = Gf = O

⇣
(
p

d)LBx

⌘
, Lf = O

⇣
(
p

d)LBx

�
(
p

d)LBx max{1, Bw}+ 1)
�⌘

. (2)

The details are deferred to Appendix J, and comparison of bound to other GCN variants are summa-
rized in Table 1. Depending on the automatic selection of ↵`,�`, the generalization bound of DGCN
is between APPNP and GCN. In the following, we make connection to many GCN structures:

• Connections to APPNP: APPNP can be thought of as a variant of DGCN. More specifically,
the layerwise weight in APPNP is computed as ↵` = ↵(1� ↵)` for ` < L and ↵` = (1� ↵)`

for ` = L given some constant ↵ 2 (0, 1), and the weight matrix is shared between all layers.
Although DGCN has L weight matrices, its generalization is independent of the number of weight
matrices, and thus enjoys a low generalization error with high expressiveness.

• Connections to GCNII: GCNII can be regarded as a variant of DGCN. Compared to GCNII, the
decoupled propagation of DGCN significantly reduces the dependency of generalization error
to the weight matrices. Besides, the learnable weights ↵` and �` allow DGCN to automatically
adapt to challenging large-scale datasets without time-consuming hyper-parameter selection.

• Connections to ResGCN: By expanding the forward computation of ResGCN, we know
that ResGCN can be think of as training an ensemble of GCNs from 1 to L layer, i.e.,
H

(L) =
PL

`=1 ↵`�(PH
(`�1)

W
(`)) with ↵` = 1. In other word, ResNet can be regarded as

the “summation of the model complexity” of L-layer. However, DGCN is using
PL

`=1 ↵` = 1,
which can be thought of as a “weighted average of model complexity”. Therefore, ResGCN is
a special case of DGCN with equal weights ↵` on each layerwise function. With just a simple
change on the ResNet structure, our model DGCN is both easy to train and good to generalize.

7 Experiments

Synthetic dataset. We empirically compare the generalization error of different GCN structures on
the synthetic dataset. In particular, we create the synthetic dataset by contextual stochastic block
model (CSBM) [12] with two equal-size classes. CSBM is a graph generation algorithm that adds
Gaussian random vectors as node features on top of classical SBM. CSBM allows for smooth control
over the information ratio between node features and graph topology by a pair of hyper-parameter
(µ,�), where µ controls the diversity of the Gaussian distribution and � controls the number of edges
between intra- and inter-class nodes. We generate random graphs with 1000 nodes, average node

9

< 2 → matrix concentration 0.99 ≈ 1 → real-world graphs are sparse 
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Optimization, Generalization, Privacy, Model design

• Graph representation unlearning (i.e., selected forgetting) is challenging due to node 
dependency.

• Existing unlearning methods are designed for setting where loss function can be 
decomposed over individual training samples.  

Weilin Cong, Mehrdad Mahdavi. Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection. (AISTATS23)

Optimization, Generalization, Privacy, Model design

Due to the node dependency, representation unlearning in graph
applications is challenging. We propose e�cient unlearning via orthogonal
projection for linear-GNN5:

(Algorithm) We propose to unlearn by projecting the weight
parameters of the pre-trained model onto a subspace that is irrelevant
to features of the nodes to be forgotten.

(Theory) We show that the unlearned model return by our method is
closer to re-trained model than existing works.
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5Weilin Cong and Mehrdad Mahdavi. “E�ciently Forgetting What You Have
Learned in Graph Representation Learning via Projection”. In: Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics. 2023.
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Optimization, Generalization, Privacy, Model design

• (Algorithm) We propose to unlearn by projecting the weight parameters of the pre-trained 
model onto a subspace that is irrelevant to features of the nodes to be forgotten.

• (Theory) We theoretically upper bound the distance between the unlearned weight 
parameters to the weight parameters obtained by re-training on the new dataset without 
the deleted nodes.

Weilin Cong, Mehrdad Mahdavi. Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection. (AISTATS23)

Weilin Cong, Mehrdad Mahdavi

x1

x3

x2

w 2 span{x1,x2,x3}

wp 2 span{x1,x2}

(a) (b)
Figure 2: The orthogonal projection unlearning in PRO-
JECTOR. The original weight w exists inside the subspace
defined by node feature vectors {x1,x2,x3}. We can un-
learn x3 and obtain the new weight wp by projecting w

onto the subspace defined without x3.

• To improve the expressive of the linear-GNN used with
PROJECTOR, we introduce two unlearning-favorable ex-
tension, i.e., non-linearity extension and adaptive diffu-
sion graph convolution (Section 3.4).

• We introduce the “feature injection test” to rigorously
verify whether an unlearning method could perfectly re-
move the trace of the deleted node features. Our results
show that PROJECTOR could perfectly remove the trace
of the deleted node features, however, other approxi-
mate unlearning methods cannot, which emphasizes the
importance of PROJECTOR (Section 4).

• Empirical results on large-scale real-world datasets of
different sizes illustrate the effectiveness, efficiency, and
robustness of PROJECTOR (Section 4 and Appendix A).

2 Related work and backgrounds

Exact unlearning. The most straightforward way is to
retrain the model from scratch, which is computationally
demanding, except for some model-specific problems such
as SVM Cauwenberghs and Poggio (2000), K-means Ginart
et al. (2019), and decision tree Brophy and Lowd (2021).
To reduce the computation cost, Bourtoule et al. (2021)
proposes to split the dataset into multiple shards and train
an independent model on each data shard, then aggregate
their prediction during inference. A similar idea is ex-
plored in Aldaghri et al. (2021); He et al. (2021). GRA-
PHERASER Chen et al. (2021) extends Bourtoule et al.
(2021) to graph-structured data by proposing a graph par-
tition method that can preserve the structural information
as much as possible and weighted prediction aggregation
for evaluation. Chen et al. (2022) further generalize Chen
et al. (2021) to the recommender system. Although the data
partition schema allows for a more efficient retrain of mod-
els on a smaller fragment of data, the model performance
suffers because each model has fewer data to be trained on
and data heterogeneity can also deteriorate the performance.
Moreover, if a large set of deleted nodes are selected at
random, it could still result in massive retraining efforts.
Ullah et al. (2021) proposes to retrain at the iteration that

deleted data the first time appears, which is not suitable if it
requires iterating the full dataset multiple rounds. Neel et al.
(2020); Ullah et al. (2021); Sekhari et al. (2021) study the
unlearning from the generalization theory perspective, Fu
et al. (2022); Nguyen et al. (2022) study unlearning for
Bayesian inference, which is orthogonal to the main focus
of this paper.

Approximate unlearning. The main idea is to approximate
the model trained without the deleted data in the parameter
space. For example, Guo et al. (2020) proposes to unlearn
by removing the influence of the deleted data on the model
parameters by first-order Taylor approximation, where the
Hessian is computed on the remaining data and gradient is
computed on the deleted data. Chien et al. (2022) gener-
alize the analysis in Guo et al. (2020) to graph. A similar
idea has been explored in Wu et al. (2022) but requires an
objective function as a finite-sum formulation, which is non-
trivial to extend onto graph-structured data. Golatkar et al.
(2020) performs Fisher forgetting by taking a single step of
Newton’s method on the remaining training data. Golatkar
et al. (2021) generalizes the idea to deep neural networks by
assuming a subset of training samples are never forgotten,
which can be used to pre-train a neural network as a feature
extractor and only unlearn the last layer. Izzo et al. (2021)
speeds up Guo et al. (2020) by using the leave-one-out resid-
uals for the linear model update, which reduces the time
complexity to linear in the dimension of the deleted data and
is independent of the size of the dataset. Wu et al. (2020a)
proposes to first save all the intermediate weight parameters
and gradients during training, then utilize such informa-
tion to efficiently estimate the optimization path. Similar
idea have been explored in Wu et al. (2020b) for logistic
regression. Notice that due to the nature of approximate
unlearning, these methods only approximately unlearn the
information of deleted data, require adding random noise,
and lack of perfect data removal guarantee in practice Thudi
et al. (2021).

Linearity requirement in unlearning. Linearity is re-
quired in most unlearning methods Guo et al. (2020); Go-
latkar et al. (2020); Wu et al. (2020a) to verify whether the
trace of deleted data has been perfectly unlearned. Unless
re-training from scratch, it is still an open problem to theoret-
ically or rigorously empirically verify this in the non-linear
models Thudi et al. (2021); Guo et al. (2020). Therefore, we
initiate our study on linear-GNNs in Section 3.2 and provide
its non-linearity extension in Section 3.4. We will rigor-
ously test whether the information is perfectly unlearned
on linear-GNNs and demonstrate the application of using
PROJECTOR with non-linear GNNs.

Relation between unlearning and differential privacy.
Unlearning and differential privacy (DP) are two concepts
that could be used in parallel. More specifically, DP aims to
prevent the privacy leakage issue, while unlearning seeks to
remove some data points’ effect on the pre-trained model.

Before unlearn

After unlearn

Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

Figure 3: Comparison on the weight difference and model prediction (after the final layer activation function) before and
after the unlearning process.

method hurt the model performance by comparing the accu-
racy before and after unlearning; 3 the computation cost by
comparing the time required for unlearning. We randomly
select 5%, 10% of the nodes from the training set as deleted
nodes. We have the following observations from Table 1:
1 By comparing the weight norm of the injected chan-
nel, we observe that GRAPHERASER and PROJECTOR can
perfectly unlearn the deleted nodes and setting the extra-
feature channel as zero. However, INFLUENCE+, FISHER+
cannot fully unlearn the correlation because they are approx-
imate unlearning methods; 2 By comparing the wall-clock
time, PROJECTOR requires less time to unlearn because it
is one-shot unlearning approach with the least computation
cost, whereas baselines either require re-training for mul-
tiple iterations (e.g., GRAPHERASER) or require a larger
computation cost to compute Hessian inversion (e.g., IN-
FLUENCE and FISHER); 3 By comparing the accuracy
before and after unlearning, INFLUENCE+ and FISHER+
have around 2%/7% performance degradation on OGB-
Arxiv/Products dataset than re-training because a stronger
regularization is required to stabilize the unlearning process
(to make sure the Hessian inverse is bounded), and GRA-
PHERASER have around 4%/9% performance degradation
on OGB-Arxiv/Products dataset due to graph partitioning;
4 By comparing the performance of PROJECTOR with and

without adaptive diffusion, we know that adaptive diffusion
provides consistent performance boosting to linear-GNN
models; 5 When comparing with re-training from scratch,
PROJECTOR is around 0.04 ⇠ 0.2% slightly better than
re-training because PROJECTOR could be thought of as a
re-weighting on the remaining nodes, which allows our
model to behave similar to the model before unlearning, but
without carrying information about the deleted nodes.

Closeness to retraining from scratch. We compare the
closeness of the unlearned solution wp to the retrained
model wu to verify our conclusion in Theorem 1 and Propo-
sition 2. We measure the difference between normalized
weight parameters kwu�wpk2/kwk2 and distance between
the final activations Evi2B[k�(w>

p hi)��(w>
u hi)k2] where

zero because the features of Vdelete does not belong to the support
vectors of weight parameters.

Table 1: Comparison on the F1-score accuracy (Acc), and
the norm of extra-feature weight channel (WN) before un-
learning and after unlearning (denoted as before ! after),
and wall-clock time (T) using linear GNN.

Method Metrics Delete 5% nodes Delete 10% nodes

O
G

B-
A

rx
iv

Acc (%) 73.33 ! 73.39 73.25 ! 73.39PROJECTOR WN (T) 21.7 ! 0 (0.07 s) 56.8 ! 0 (0.07 s)
Acc (%) 73.42 ! 73.48 73.34 ! 73.44PROJECTOR

(+ adapt diff) WN (T) 24.3 ! 0 (0.07 s) 25.6 ! 0 (0.07 s)
GRAPHERASER
(⇥8 subgraphs)

Acc (%) 70.59 ! 70.56 70.55 ! 70.23
WN (T) 22.3 ! 0 (1, 866 s) 30.6 ! 0 (1, 866 s)

INFLUENCE+ Acc (%) 71.90 ! 72.73 70.40 ! 72.65
WN (T) 29.2 ! 14.1 (1.1 s) 21.1 ! 12.1 (1.1 s)

FISHER+ Acc (%) 72.29 ! 72.73 71.71 ! 72.65
WN (T) 29.2 ! 14.1 (0.4 s) 35.4 ! 15.6 (0.3 s)

RE-TRAINING
(+ adapt diff)

Acc (%) 73.42 ! 73.42 73.34 ! 73.40
WN (T) 24.3 ! 0 (1, 973 s) 25.6 ! 0 (1, 973 s)

O
G

B-
Pr

od
uc

ts

Acc (%) 79.21 ! 79.22 79.18 ! 79.11PROJECTOR WN (T) 27.6 ! 0 (0.06 s) 30.8 ! 0 (0.06 s)
Acc (%) 79.95 ! 79.93 79.96 ! 79.91PROJECTOR

(+ adapt diff) WN (T) 16.4 ! 0 (0.06 s) 18.6 ! 0 (0.06 s)
GRAPHERASER
(⇥8 subgraphs)

Acc (%) 70.80 ! 70.78 70.80 ! 70.78
WN (T) 25.4 ! 0 (598 s) 28.9 ! 0 (598 s)

INFLUENCE+ Acc (%) 72.23 ! 72.78 72.08 ! 72.51
WN (T) 8.9 ! 3.1 (1.7 s) 14.3 ! 4.2 (1.9 s)

FISHER+ Acc (%) 72.23 ! 72.78 72.08 ! 72.51
WN (T) 8.9 ! 3.1 (1.3 s) 14.3 ! 4.2 (1.1 s)

RE-TRAINING
(+ adapt diff)

Acc (%) 79.95 ! 79.74 79.96 ! 79.71
WN (T) 16.4 ! 0 (661 s) 18.6 ! 0 (661 s)

B 2 {Vdelete,Vremain,Vtest}. Ideally, a powerful unlearning
algorithm is expected to generate similar final weight pa-
rameters and activations to the retrained model. We ran-
domly select 1% of the nodes from the training set as the
deleted nodes Vdelete ⇢ Vtrain and the rest as remain nodes
Vremain = Vtrain \Vdelete. As shown in Figure 3, both the final
activation (column 1, 2, 3) and the output parameters (col-
umn 4) of PROJECTOR (blue curve) is closer to the weight
obtained by retraining from scratch compared to baseline
methods, which could reflect our result in Proposition 2.
Besides, we can observe that lower unlearning percentage
leads to a smaller difference on the output weight parame-
ters of PROJECTOR (blue curve in column 4), which could
reflect our theoretical result in Theorem 1.

Compare to non-linear models. We compare the perfor-

👇
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https://congweilin.github.io/CongWeilin.io/files/Projector.pdf
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• During my PhD study, my research focuses on fundamental machine 
learning problems on graph structured data
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Optimization, Generalization, Privacy, Model design

• Use Transformer for temporal graph learning.
• (Algorithm) We propose a scalable Transformer-like temporal graph learning method
• (Theory) To improve the generalization ability, we introduce self-supervised pre-training 

task and show that jointly optimizing them results in a smaller Bayesian error via an 
information theoretic analysis

Weilin Cong, Yanhong Wu, Yuandong Tian, Mengting Gu, Yinglong Xia, Jason Chen, Mehrdad Mahdavi
DyFormer : A Scalable Dynamic Graph Transformer with Provable Benefits on Generalization Ability. (SDM23)

Optimization, Generalization, Privacy, Model design

Use Transformer for temporal graph learning6:

(Algorithm) we propose a scalable Transformer-like temporal graph
learning method

(Theory) To improve the generalization ability, we introduce
self-supervised pre-training tasks and show that jointly optimizing
them results in a smaller Bayesian error rate via an information-
theoretic analysis
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Figure 1: Overview of using DyFormer for link prediction. Given snapshot graphs {G1, G2} as input, (1) we first
generate the temporal union graph with the considered max shortest path distance Dmax = 5, and its associated (2)
temporal connection encoding and (3) spatial distance encoding. Then, the encodings are mapped into ATC

i,j , ASD
i,j

for each node pairs (i, j) using a fully connected layer. To predict whether an edge exists in G3, we first (4) sample
target and context nodes, then apply (5) DyFormer to encode target nodes and context nodes separately.

temporal-union graph Gunion, which can be recognized
and leveraged by Transformers. Most classical GNNs
either over-rely on the given graph structure by only
considering the first- or higher-order neighbors for
feature aggregation [31] (which could make the model
fail to capture the inter-relation between nodes that
are not connected in the labeled graph) or directly
learn graph adjacency without using the given graph
structure [5] (which makes the optimization problem
challenging because the model has to iteratively learn
model parameters and estimate the graph structure). To
avoid the above two extremes, we present two simple
but e�ective encoding designs, i.e., temporal connection
encoding and spatial distance encoding, and introduce
how to integrate them into DyFormer.

Temporal connection encoding. Temporal con-
nection (TC) encoding is designed to inform Dy-
Former if an edge (i, j) exists in the t-th snapshot graph.
We denote ETC = [eTC

2t�1, e
TC
2t ]Tt=1 2 R2T�d as the tempo-

ral connection encoding lookup-table where d represents
the hidden dimension size, which is indexed by a func-
tion �(i, j, t) indicating whether an edge (i, j) exists at
time-step t. More specifically, we have �(i, j, t) = 2t if
(i, j) 2 Gt, �(i, j, t) = 2t � 1 if (i, j) �2 Gt and use this
value as an index to extract the corresponding temporal
connection embedding from the look-up table for next-
step processing. Note that during pre-training or the
training on first few time-steps, we need to mask-out
certain time-steps to avoid leaking information related
to the predicted items (e.g., the temporal reconstruction
task in Section. 4.1). In these cases, we set �(i, j, t0) = Ø
where t0 denotes the time-step we mask-out, and skip

the embedding extraction at time t0.
Spatial distance encoding. Spatial distance (SD)

encoding is designed to provide DyFormer a global view
of the graph structure. The success of Transformer is
largely attributed to its global receptive field due to
its full attention, i.e., each token in the sequence can
attend independently to other tokens and process its
representations. Computing full attention requires the
model to explicitly capturing the positions dependency
between tokens, which can be achieved by either as-
signing each position an absolute positional encoding
or encode the relative distance using relative positional
encoding. However, for graphs, the design of unique
node positions is not mandatory because a graph is not
changed by the permutation of its nodes. To encode the
global structural information of a graph in the model,
inspired by [31], we adopt a spatial distance encoding
that measures the relative spatial relationship between
any two nodes in the graph, which is a generalization
of the classical Transformer’s positional encoding to the
graph domain. Let Dmax be the maximum shortest path
distance (SPD) we considered, where Dmax is a hyper-
parameter that can be smaller than the graph diameter.
Specifically, given any node i and node j, we define
�(i, j) = min{SPD(i, j), Dmax} as the SPD between
the two nodes if SPD(i, j) < Dmax and otherwise as
Dmax. Let ESD = [eSD

1 , . . . , eSD
Dmax

] 2 RDmax�d as the
spatial distance lookup-table which is indexed by the
�(i, j), where �(i, j) is used to select the spatial dis-
tance encoding eSD

�(i,j) that provides the spatial distance
information of two nodes.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

6Weilin Cong et al. “DyFormer: A Scalable Dynamic Graph Transformer with
Provable Benefits on Generalization Ability”. In: Proceedings of the 2023 SIAM
international conference on data mining. SIAM. 2023.
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Optimization, Generalization, Privacy, Model design

• Design neural architecture for temporal graph learning (TGL).
• (Experiments) RNN and self-attention mechanism (SAM) are the de facto standard for 

TGL. Although both RNN and SAM could lead to good performance, in practice neither of 
them is always necessary.

• (Algorithm) We propose a conceptually and technically simple architecture, which attains 
an outstanding performance with faster convergence and better generalization ability.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, Mehrdad Mahdavi
Do We Really Need Complicated Model Architectures For Temporal Networks? (ICLR23 Oral)

Optimization, Generalization, Privacy, Model design

Design neural architecture for temporal graph learning (TGL)7:

(Experiments) RNN and self-attention are the de facto standard for
TGL. Although both RNN and SAM could lead to a good
performance, in practice neither of them is always necessary.

(Algorithm) We propose a conceptually and technically simple
architecture, which attains an outstanding performance with faster
convergence and better generalization.

ti(k) Xtime
i (k) =
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��
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...
cos(t4!)

�

��

xidentity(i), where [xidentity(i)]j =

�
��

��
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0 otherwise
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Summarization on research visions

• What makes my research different from others?
• (1) Fundamental problems > Specific applications
• (2) Theoretical analysis & Empirical evaluation & Model design
• (3) Rethink the apparent consensus > Following the apparent consensus:
• (Generalization) “Over-smoothing” not necessarily happen in practice, 

performance degradation issue is due to generalization
• (Privacy) Differential privacy (DP)-based unlearning might fail and 

results in poor performance, we propose a theory guided Projection-
based unlearning method
• (Model design) Intuitively, RNN and self-attention is suitable for 

temporal graph. However, we found that RNN and self-attention free 
method could achieve better performance.
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ABSTRACT

Recurrent neural network (RNN) and self-attention mechanism (SAM) are the de
facto methods to extract spatial-temporal information for temporal graph learning.
Interestingly, we found that although both RNN and SAM could lead to a good per-
formance, in practice neither of them is always necessary. In this paper, we propose
GraphMixer, a conceptually and technically simple architecture that consists of
three components: 1 a link-encoder that is only based on multi-layer perceptrons
(MLP) to summarize the information from temporal links, 2 a node-encoder that
is only based on neighbor mean-pooling to summarize node information, and 3
an MLP-based link classifier that performs link prediction based on the outputs
of the encoders. Despite its simplicity, GraphMixer attains an outstanding perfor-
mance on temporal link prediction benchmarks with faster convergence and better
generalization performance. These results motivate us to rethink the importance of
simpler model architecture. [Code].

1 INTRODUCTION

In recent years, temporal graph learning has been recognized as an important machine learning
problem and has become the cornerstone behind a wealth of high-impact applications Yu et al. (2018);
Bui et al. (2021); Kazemi et al. (2020); Zhou et al. (2020); Cong et al. (2021b). Temporal link
prediction is one of the classic downstream tasks which focuses on predicting the future interactions
among nodes. For example, in an ads ranking system, the user-ad clicks can be modeled as a temporal
bipartite graph whose nodes represent users and ads, and links are associated with timestamps
indicating when users click ads. Link prediction between them can be used to predict whether a user
will click an ad. Designing graph learning models that can capture node evolutionary patterns and
accurately predict future links is a crucial direction for many real-world recommender systems.

In temporal graph learning, recurrent neural network (RNN) and self-attention mechanism (SAM)
have become the de facto standard for temporal graph learning Kumar et al. (2019); Sankar et al.
(2020); Xu et al. (2020); Rossi et al. (2020); Wang et al. (2020), and the majority of the existing
works focus on designing neural architectures with one of them and additional components to learn
representations from raw data. Although powerful, these methods are conceptually and technically
complicated with advanced model architectures. It is non-trivial to understand which parts of the
model design truly contribute to its success, and whether these components are indispensable. Thus,
in this paper, we aim at answering the following two questions:

Q1: Are RNN and SAM always indispensable for temporal graph learning? To answer this question,
we propose GraphMixer, a simple architecture based entirely on the multi-layer perceptrons (MLPs)
and neighbor mean-pooling, which does not utilize any RNN or SAM in its model architecture
(Section 3). Despite its simplicity, GraphMixer could obtain outstanding results when comparing it

1



Background

• Temporal network structure:

• Goal: prediction if 𝑣*, 𝑣+ interact at 𝑡, based on all the available temporal 
graph information during {𝑡-, … , 𝑡.}
• Application: recommender system, traffic prediction

Deeper dive into one recent work

Model design for temporal graph learning8:
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<latexit sha1_base64="yTYT7Q6hlzOMXvEBT16aFkR5Nfc=">AAACAHicbVBNS8NAEN34WetX1IMHL8EieCpJKeqx6MVjBfsBbQyb7aZdutmE3Ym0hFz8K148KOLVn+HNf+OmzUFbHww83pthZp4fc6bAtr+NldW19Y3N0lZ5e2d3b988OGyrKJGEtkjEI9n1saKcCdoCBpx2Y0lx6HPa8cc3ud95pFKxSNzDNKZuiIeCBYxg0JJnHvdDDCM/SCeZV3voA51AqmKeeWbFrtozWMvEKUgFFWh65ld/EJEkpAIIx0r1HDsGN8USGOE0K/cTRWNMxnhIe5oKHFLlprMHMutMKwMriKQuAdZM/T2R4lCpaejrzvxctejl4n9eL4Hgyk2ZiBOggswXBQm3ILLyNKwBk5QAn2qCiWT6VouMsMQEdGZlHYKz+PIyadeqzkW1flevNK6LOEroBJ2ic+SgS9RAt6iJWoigDD2jV/RmPBkvxrvxMW9dMYqZI/QHxucPxx+XLw==</latexit>

xspl
2

Zero-padding
LN+Linear
Transpose
Linear

Mean-pooling

<latexit sha1_base64="HEKeveZVrlSrkTYZKO2jk9iG1rA="></latexit>

T2(k) = stack

�

�����

[cos(t1 ⇥ !) || xlink
1,2 (k � t1)]

[cos(t3 ⇥ !) || xlink
2,4 (k � t3)]

[cos(t4 ⇥ !) || xlink
2,4 (k � t4)]

[cos(t5 ⇥ !) || xlink
1,2 (k � t5)]

�

�����

<latexit sha1_base64="fa76Vjfd/ZShd0U3/F8csNEblao="></latexit>

s2(k) = xnode
2 +

1

|N T
k (v2)|

�
vj�N T

k (v2)
xnode

j

<latexit sha1_base64="Q8d2qGkWRhhPvnVvqGjD54CkP/s=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4kDAjcTkGvXiMYBZIhqGn05M06VnsrhHCkJ/w4kERr/6ON//GTjIHTXxQ8Hiviqp6fiKFRtv+tgorq2vrG8XN0tb2zu5eef+gpeNUMd5ksYxVx6eaSxHxJgqUvJMoTkNf8rY/up367SeutIijBxwn3A3pIBKBYBSN1EHPOSPoXXjlil21ZyDLxMlJBXI0vPJXrx+zNOQRMkm17jp2gm5GFQom+aTUSzVPKBvRAe8aGtGQazeb3TshJ0bpkyBWpiIkM/X3REZDrcehbzpDikO96E3F/7xuisG1m4koSZFHbL4oSCXBmEyfJ32hOEM5NoQyJcythA2pogxNRCUTgrP48jJpnVedy2rtvlap3+RxFOEIjuEUHLiCOtxBA5rAQMIzvMKb9Wi9WO/Wx7y1YOUzh/AH1ucPy/uPKw==</latexit>

t1, t5

<latexit sha1_base64="/fBkRLvL0GW70fe4G8+OxYC36FI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgQcKuBvUY9OIxgnlAsiyzk9lkyOzDmV4hLPkJLx4U8ervePNvnCR70MSChqKqm+4uP5FCo21/W4WV1bX1jeJmaWt7Z3evvH/Q0nGqGG+yWMaq41PNpYh4EwVK3kkUp6Evedsf3U799hNXWsTRA44T7oZ0EIlAMIpG6qB3cUbQq3nlil21ZyDLxMlJBXI0vPJXrx+zNOQRMkm17jp2gm5GFQom+aTUSzVPKBvRAe8aGtGQazeb3TshJ0bpkyBWpiIkM/X3REZDrcehbzpDikO96E3F/7xuisG1m4koSZFHbL4oSCXBmEyfJ32hOEM5NoQyJcythA2pogxNRCUTgrP48jJpnVedy2rtvlap3+RxFOEIjuEUHLiCOtxBA5rAQMIzvMKb9Wi9WO/Wx7y1YOUzh/AH1ucPzYmPLA==</latexit>

t3, t4

<latexit sha1_base64="VfQlbjz14oEvJ+wNqJlCEmczKxA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3WO/1i9X3Ko7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEKCo2m</latexit>

t2
<latexit sha1_base64="xRFvcCAHe3sdZK6o49MLG0zyJbM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPe8XrniVt05yCrxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzUKTmzSp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2nZEPwll9eJc2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMLko2n</latexit>v1

<latexit sha1_base64="pd6CG+fgXjPa9TrI/+SvifD5VxY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9Iolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexdlasP1VLtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8NFo2o</latexit>v2
<latexit sha1_base64="b2tEeKlWWv/DNO1wXN9nzf05O4M=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdm7KlceKqXqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADpqNqQ==</latexit>v3

<latexit sha1_base64="hO320iBa8sEmbXNNilQxEqLdr0Y=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9Vj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc3LindVqT5Uy7XbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEQHo2q</latexit>v4
<latexit sha1_base64="Vx17vpUuOe1Mymv9gb2X5BrXIdI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbDu5nfHKHSPJZPZpygH9G+5CFn1FjpcdS97BZLbtmdg6wSLyMlyFDrFr86vZilEUrDBNW67bmJ8SdUGc4ETgudVGNC2ZD2sW2ppBFqfzI/dUrOrNIjYaxsSUPm6u+JCY20HkeB7YyoGehlbyb+57VTE974Ey6T1KBki0VhKoiJyexv0uMKmRFjSyhT3N5K2IAqyoxNp2BD8JZfXiWNi7J3Va48VErV2yyOPJzAKZyDB9dQhXuoQR0Y9OEZXuHNEc6L8+58LFpzTjZzDH/gfP4AEaKNqw==</latexit>v5Temporal graph

(now) (past)

<latexit sha1_base64="Q8d2qGkWRhhPvnVvqGjD54CkP/s=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4kDAjcTkGvXiMYBZIhqGn05M06VnsrhHCkJ/w4kERr/6ON//GTjIHTXxQ8Hiviqp6fiKFRtv+tgorq2vrG8XN0tb2zu5eef+gpeNUMd5ksYxVx6eaSxHxJgqUvJMoTkNf8rY/up367SeutIijBxwn3A3pIBKBYBSN1EHPOSPoXXjlil21ZyDLxMlJBXI0vPJXrx+zNOQRMkm17jp2gm5GFQom+aTUSzVPKBvRAe8aGtGQazeb3TshJ0bpkyBWpiIkM/X3REZDrcehbzpDikO96E3F/7xuisG1m4koSZFHbL4oSCXBmEyfJ32hOEM5NoQyJcythA2pogxNRCUTgrP48jJpnVedy2rtvlap3+RxFOEIjuEUHLiCOtxBA5rAQMIzvMKb9Wi9WO/Wx7y1YOUzh/AH1ucPy/uPKw==</latexit>

t1, t5
<latexit sha1_base64="xRFvcCAHe3sdZK6o49MLG0zyJbM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPe8XrniVt05yCrxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzUKTmzSp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2nZEPwll9eJc2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMLko2n</latexit>v1

<latexit sha1_base64="pd6CG+fgXjPa9TrI/+SvifD5VxY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9Iolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexdlasP1VLtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8NFo2o</latexit>v2Link features

t1 t2 t3 t4 t5

<latexit sha1_base64="zwv9/bOlmoJktBdHYC6VZVWyUXg=">AAACLXichVDJSgNBEO2JW4zbqEcvg0FIIISZEJdjUA8eI5gFkjj0dHqSJj0L3TWSMIwf5MVfEcFDRLz6G3aWgyaCDxoer15VVz0n5EyCaY611Mrq2vpGejOztb2zu6fvH9RlEAlCayTggWg6WFLOfFoDBpw2Q0Gx53DacAZXk3rjgQrJAv8ORiHteLjnM5cRDEqy9eu2h6HvuPEwsWOrUEru20CHEKt5gyQHtpUvPP5jOc3betYsmlMYy8Sakyyao2rrr+1uQCKP+kA4lrJlmSF0YiyAEU6TTDuSNMRkgHu0paiPPSo78fTaxDhRStdwA6GeD8ZU/dkRY0/Kkeco52RxuVibiH/VWhG4F52Y+WEE1Cezj9yIGxAYk+iMLhOUAB8pgolgaleD9LHABFTAGRWCtXjyMqmXitZZsXxbzlYu53Gk0RE6RjlkoXNUQTeoimqIoCf0gsboXXvW3rQP7XNmTWnznkP0C9rXNyXkqUY=</latexit>

xlink
1,2 (t1), xlink

1,2 (t5)

<latexit sha1_base64="N1bQF1eqDfmDxCplzsJmDBdgCjc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+y7/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwcCjaQ=</latexit>

t0

<latexit sha1_base64="z81ix6QeHP3t69NC0TOp7j1UnKc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVL+8vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAQGo2q</latexit>

t6

<latexit sha1_base64="z81ix6QeHP3t69NC0TOp7j1UnKc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVL+8vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAQGo2q</latexit>

t6

Figure: Temporal graph with nodes {v1, . . . , v5} and per-link timestamps
{t1, . . . , t6} indicate when two nodes interact.

Goal: predict if vi , vj interact at t0 based on all the available temporal
graph information during {t1, . . . , t6}.
Application: recommender system, tra�c prediction.

8Weilin Cong et al. “Do We Really Need Complicated Model Architectures For
Temporal Networks?” In: The Eleventh International Conference on Learning
Representations. 2023.
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Motivation
• Existing works: RNN and self-attention mechanism (SAM) are the de 

facto standard for temporal graph learning, e.g., 
• JODIE: Inputs à RNN + Memory blocks
• TGAT:   Inputs à Self-attention mechanism
• TGN:     Inputs à RNN + Memory blocks à Self-attention mechanism

• Indeed, such architecture design matches our intuition

• It has the following drawbacks:
• These methods are conceptually and technically complicated with 

advanced model architecture, which is hard to implement
• Hard to understand which parts of the model truly contribute to its 

success, and whether these components are indispensable



Rethinking …
• Q: Are RNN and self-attention indispensable for TGL? 
• A: Not really …

• We propose GraphMixer that based entirely on the MLPs and neighbor mean-pooling;
• GraphMixer achieves SOTA performance with even smaller computation cost and 

number of parameters

Rethinking ...

Q1: Are RNN and self-attention always indispensable for temporal graph
learning?
A1: Not really ...

We propose GraphMixer that based entirely on the MLPs and
neighbor mean-pooling;
GraphMixer achieves SOTA performance with even smaller
computation cost and number of parameters.

Node features Link features Timestamps

Link-encoder

Node-encoder

Link-classifier

Time-encoding 
function

MLP!
"MLP

#
MLP
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We don’t need complicated 
method if we could select 
the “right” input data

🤩



Link-encoder, Node-encoder, Link-classifier

• Design to summarize the temporal link information (link timestamps and 
link features) with each node sorted by timestamps.
• To distinguish different timestamps, we introduce our time-encoding 

function cos 𝑡𝝎 to encode each timestamps into 𝑑-dimensional vector, 
where 𝝎 = {𝛼/(*/-)/3}*4-5 is fixed not trainable

• Our time-encoding function enjoys two properties:
• Similar timestamps have similar time-encodings (e.g., the plot of 𝑡!, 𝑡")
• The larger the timestamps, the later the values in time-encodings convergence to +1. 

(e.g., the plot of 𝑡!, 𝑡# and 𝑡!, 𝑡$)

Optimization, Generalization, Privacy, Model design

Design neural architecture for temporal graph learning (TGL)7:

(Experiments) RNN and self-attention are the de facto standard for
TGL. Although both RNN and SAM could lead to a good
performance, in practice neither of them is always necessary.

(Algorithm) We propose a conceptually and technically simple
architecture, which attains an outstanding performance with faster
convergence and better generalization.

ti(k) Xtime
i (k) =

�

��
cos(t1!)

...
cos(t4!)

�

��

xidentity(i), where [xidentity(i)]j =

�
��

��

1 if j = i

1/N (i) if j 2 N (i)

0 otherwise

z(i) = [xnode(i) || xidentity(i) || xtemporal(i)]

zij = ReLU
�
Wsrcz(i) + Wdstz(j) + b

�

ŷij = Sigmoid(w>zij + b)

Xmixer
i =�

Xtime
i Xlink

i

0 0

�
xtemporal

i (k)

Token-mixer

Channel-mixer

Mean-pooling

MLP-Mixer

xtemporal(i)

Xlink
i (k)

<latexit sha1_base64="r35mnhe9SYilnfI/p+c5xK7HpxY=">AAAC0nicfZJNbxMxEIa9y1cJH03hyMUiApVLtJtGwLGCCzeK1LSV4iia9U42Vr32yp4FpatQVVz5ddz4CfwLnG2EoA0dyfKrd/zIM2NnlVaekuRnFN+6fefuva37nQcPHz3e7u48OfK2dhJH0mrrTjLwqJXBESnSeFI5hDLTeJydvl/ljz+j88qaQ1pUOCmhMGqmJFCwpt1fIsNCmQa0Kgzmy85LTtOUC6eKOYFz9gsX0vrd1syszv2iDFsjbIkFLF9xIVpksAkZ3IjsbUL2bkSGm5DhfxGBJv/T2bTbS/pJG/y6SNeix9ZxMO3+ELmVdYmGpAbvx2lS0aQBR0pqXHZE7bECeQoFjoM0UKKfNO2TLPmL4OR8Zl1Yhnjr/k00UPpVxeFkCTT3V3Mrc1NuXNPs7aRRpqoJjby8aFZrTpav3pfnyqEkvQgCpFOhVi7n4EBS+AWdMIT0asvXxdGgn77uDz8Ne/vv1uPYYs/Yc7bLUvaG7bMP7ICNmIw+RnX0NTqPD+Oz+CL+dnk0jtbMU/ZPxN9/AwKf4NU=</latexit>

t1 ! cos(t1!)

t2 ! cos(t2!)

t3 ! cos(t3!)

t4 ! cos(t4!)

<latexit sha1_base64="r35mnhe9SYilnfI/p+c5xK7HpxY="></latexit>

t1 ! cos(t1!)

t2 ! cos(t2!)

t3 ! cos(t3!)

t4 ! cos(t4!)

<latexit sha1_base64="wDNeVYaoNqi9UkgrM1troqRKxM4="></latexit>

stack

�

�����

[cos((t0 � t1) ⇥ !) || xlink
1,2 (t1)]

[cos((t0 � t3) ⇥ !) || xlink
2,4 (t3)]

[cos((t0 � t4) ⇥ !) || xlink
2,4 (t4)]
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7Weilin Cong et al. “Do We Really Need Complicated Model Architectures For
Temporal Networks?” In: The Eleventh International Conference on Learning
Representations. 2023.
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Quick experiment on time-encoding function

• Existing works leverage a trainable time-encoding function 𝒛 𝑡 =
cos(t𝒘 + b) to represent timestamps.
• However, trainable time-encoding function could cause instability during 

training because its gradient 6 789 :𝒘<=
6>

= 𝑡× sin(𝑡𝒘 + 𝑏) scales 
proportional to the timestamps

• Setup: given any 𝑡-, 𝑡? ∈ [0, 10.], our goal is to classify if 𝑡- > 𝑡? by learning 
a linear classifier on [𝑧 𝑡- ∥ 𝑧 𝑡? ]
• Results: we give the gradient norm (left figure) and accuracy (right figure) 

at each iteration. We can observe that trainable time-encoding function 
suffer from training instability issue.

Quick experiment on time-encoding function

Existing works leverage a trainable time-encoding function
z(t) = cos(tw> + b) to represent timestamps.

However, trainable time-encoding function could cause instability
during training because its gradient @ cos(tw+b)

@w = t ⇥ sin(tw + b)
scales proportional to the timestamps.

(b)

(a)

Setup: given any t1, t2 2 [0, 106], our goal is to classify if t1 > t2 by
learning a linear classifier on [z(t1) || z(t2)]
Results: we compare the gradient / parameters norm and accuracy at
each iteration. We can observe that trainable time-encoding function
su↵er from training instability issue.
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Quick experiment on time-encoding function

• Meanwhile, we compare the parameter trajectories of the two models:

• We observe that the change of parameters on the trainable time-encoding 
function is drastically larger than our fixed version
• A huge change in weight parameters could deteriorate the model 

performance

Quick experiment on time-encoding function

Meanwhile, we compare the parameter trajectories of the two models.

(b)

(a)

We observe that the change of parameters on the trainable
time-encoding function is drastically larger than our fixed version.

A huge change in weight parameters could deteriorate the model’s
performance.

Table: Comparison on average precision score with fixed/trainable time encoding
function. “Trainable00 ! “Fixed00.

Reddit Wiki MOOC LastFM GDELT-ne GDELT-e

JODIE 99.30 ! 99.76 98.81 ! 99.00 99.16 ! 99.17 67.51 ! 79.89 97.13 ! 98.23 96.96 ! 96.96
TGAT 98.66 ! 99.48 96.71 ! 98.55 98.43 ! 99.33 54.77 ! 76.26 84.30 ! 92.31 96.96 ! 96.28
TGN 99.80 ! 99.83 99.55 ! 99.54 99.62 ! 99.62 82.23 ! 87.58 98.15 ! 98.25 96.04 ! 97.34
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Quick experiment on time-encoding function

Meanwhile, we compare the parameter trajectories of the two models.
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(a)
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time-encoding function is drastically larger than our fixed version.
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😭Weight parameters change too 
much/quick during training



Link-encoder, Node-encoder, Link-classifier

• To summarize the temporal link information, we use 1-layer MLP

• To summarize the temporal link information of a node,
• Firstly, we encode timestamps by our time-encoding function, then

concatenate it with its corresponding link features
• Then, we stack all the outputs into a big matrix and zero-pad to the 

fixed length K
• Finally, we use a 1-layer MLP-mixer with mean-pooling to compress it 

into a single vector

Link encoder, node encoder, link classifier

To summarize the temporal link information, we use 1-layer MLP-mixer.
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Figure: (a) Time-encoding function (b) Link-encoder

To summarize the temporal link information of a node,

Firstly, we encode timestamps by our time-encoding function then
concatenate it with its corresponding link features.

Then, we stack all the outputs into a big matrix and zero-pad to the
fixed length K .

Finally, we use an 1-layer MLP-mixer with mean-pooling to compress
it into a single vector.
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Quick experiments on link-encoder

• Q2: Can we replace the MLP-mixer in link-encoder with self-attention?
• We test by replacing the MLP-mixer in link-encoder with 

• Full self-attention / 1-hop self-attention
• Sum pooling / mean-pooling

• Performance drop when using self-attention:
• The best performance is achieved when using MLP-mixer with zero-padding;
• The model performance drop slightly when using self-attention with sum-pooling (2nd and 4th row)
• The performance drop significantly when using self-attention with mean pooling (3rd and 5th row)

Quick experiments on link-encoder

Can we replace the MLP-mixer in link-encoder with self-attention? We
test by replacing the MLP-mixer in link-encoder with full/1-hop
self-attention and sum/mean-pooling.

Link-info encoder with Reddit Wiki MOOC LastFM GDELT-ne

(Default) MLP-mixer + Zero-padding 99.93 99.85 99.91 96.31 98.39

Full self-attention
+ Sum pooling 99.81 98.19 99.55 93.97 98.28
+ Mean pooling 99.00 98.05 99.31 89.15 97.13

1-hop self-attention
+ Sum pooling 99.81 98.01 99.30 93.69 98.16
+ Mean pooling 98.94 97.29 98.96 72.32 97.09

Performance drop when using self-attention:

the best performance is achieved when using MLP-mixer with
zero-padding,

the model performance drop slightly when using self-attention with
sum-pooling (row 2 and 4),

the performance drop significantly when using self-attention with
mean-pooling (row 3 and 5). Why?
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Quick experiments on link-encoder

• Q3: Self-attention with mean-pooling has a weaker model performance?
• It cannot distinguish “temporal sequence with identical link timestamps 

and link features”. For example, it cannot distinguish [𝑎-, 𝑎-] and [𝑎-];
• It cannot explicitly capture “the length of temporal sequence”. For 

example, it cannot distinguish if [𝑎-, 𝑎?] is longer than [𝑎@];

These properties are very important to understand how frequent a node 
interacts with other nodes à related to the input data.

Quick experiments on link-encoder

Self-attention with mean-pooling has a weaker model performance because

it cannot distinguish “temporal sequences with identical link
timestamps and features” (e.g., cannot distinguish [a1, a1] and [a1],

it cannot explicitly capture “the length of temporal sequences” (e.g.,
cannot distinguish if [a1, a2] is longer than [a3]),

which are both very important to understand how frequent a node
interacts with other nodes. Related to the selection of input data.

(a) e.g., classify if [a1, a1] = [a1] (b) e.g., classify if size[a1, a2] > size[a3]
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Different inputs between ours and others

• Temporal graph as undirected vs directed graph
• Most of the existing works consider temporal graphs as directed graphs with 

information only flows from the source nodes to the destination nodes
• However, we consider the temporal graph as undirected graph
• By doing so, if two nodes are frequently connected in the last few timestamps, the 

“most recent 1-hop neighbors” sampled for the two nodes on the “undirected” 
temporal graph would be similar

• Intuitively, if two nodes are frequently connected in the last few 
timestamps, they are also likely to be connected in the recent future

Di↵erent inputs between GraphMixer and other methods

Temporal graph as undirected vs directed graph

Most of the existing works consider temporal graphs as directed
graphs with information only flows from the source node (e.g., users
in the recommender system) to the destination nodes (e.g., ads in the
recommender system).

However, we consider the temporal graph as an undirected graph.

By doing so, if two nodes are frequently connected in the last few
timestamps, the “most recent 1-hop neighbors” sampled for the two
nodes on the “undirected” temporal graph would be similar.

Intuitively, if two nodes are frequently connected in the last few
timestamps, they are also likely to be connected in the recent future.
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Link-encoder, Node-encoder, Link-classifier

• Node encoder is designed to capture the node identity and node feature 
information via neighbor mean-pooling (i.e., 1-hop SIGN features)
• 𝒩 𝑣*; 𝑡, 𝑡, as 1-hop neighbor of node 𝑣* with link timestamps from 𝑡 to 𝑡,
• Then, the node information features are computed based on the 1-hop 

neighbor by
𝒔* 𝑡, = 𝒙*AB5C +𝑀𝑒𝑎𝑛 𝒙+AB5C | 𝑣+ ∈ 𝒩(𝑣*; 𝑡, − 𝑇, 𝑡,)

Rethinking ...

Q1: Are RNN and self-attention always indispensable for temporal graph
learning?
A1: Not really ...

We propose GraphMixer that based entirely on the MLPs and
neighbor mean-pooling;
GraphMixer achieves SOTA performance with even smaller
computation cost and number of parameters.

Node features Link features Timestamps

Link-encoder

Node-encoder

Link-classifier

Time-encoding 
function

MLP!
"MLP

#
MLP
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Link-encoder, Node-encoder, Link-classifier

• Link-classifier is computed by applying 2-layer MLP model on the 
concatenated output of node-encoder and link-encoder

Rethinking ...

Q1: Are RNN and self-attention always indispensable for temporal graph
learning?
A1: Not really ...

We propose GraphMixer that based entirely on the MLPs and
neighbor mean-pooling;
GraphMixer achieves SOTA performance with even smaller
computation cost and number of parameters.

Node features Link features Timestamps

Link-encoder

Node-encoder
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Time-encoding 
function
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Experiments

• GraphMixer achieves outstanding performance
• Two variant of GraphMixer:

• GraphMixer-L: only use link-encoder + link-classifier
• GraphMixer-N: only use node-encoder + link-classifier

Experiments

GraphMixer achieves outstanding performance.

Table: Comparison on the average precision score for link prediction.

Reddit Wiki MOOC LastFM GDELT GDELT-ne GDELT-e
L, T L, T T T L, N, T T N, T

JODIE 99.30 ± 0.01 98.81 ± 0.01 99.16 ± 0.01 67.51 ± 0.87 98.27 ± 0.02 97.13 ± 0.02 96.96 ± 0.02
DySAT 98.52 ± 0.01 96.71 ± 0.02 98.82 ± 0.02 76.40 ± 0.77 98.52 ± 0.02 82.47 ± 0.13 97.25 ± 0.02
TGAT 99.66 ± 0.01 97.75 ± 0.02 98.43 ± 0.01 54.77 ± 1.01 98.25 ± 0.02 84.30 ± 0.10 96.96 ± 0.02
TGN 99.80 ± 0.01 99.55 ± 0.01 99.62 ± 0.01 82.23 ± 0.50 98.15 ± 0.02 97.13 ± 0.02 96.04 ± 0.02
CAWs-mean 98.43 ± 0.02 97.72 ± 0.03 62.99 ± 0.87 76.35 ± 0.08 95.11 ± 0.12 69.20 ± 0.10 91.72 ± 0.19
CAWs-attn 98.51 ± 0.02 97.95 ± 0.03 63.07 ± 0.82 76.31 ± 0.10 95.06 ± 0.11 69.54 ± 0.19 91.54 ± 0.22
TGSRec 95.21 ± 0.08 91.64 ± 0.12 83.62 ± 0.34 76.91 ± 0.87 97.03 ± 0.61 97.03 ± 0.61 97.03 ± 0.61
APAN 99.24 ± 0.02 98.14 ± 0.01 98.70 ± 0.98 69.39 ± 0.81 95.96 ± 0.10 97.38 ± 0.23 96.77 ± 0.18
GraphMixer-L 99.84 ± 0.01 99.70 ± 0.01 99.81 ± 0.01 95.50 ± 0.03 98.99 ± 0.02 96.14 ± 0.02 98.99 ± 0.02
GraphMixer-N 99.24 ± 0.01\ 90.33 ± 0.01\ 97.35 ± 0.02\ 63.80 ± 0.03\ 94.44 ± 0.02 96.00 ± 0.02\ 98.81 ± 0.02\

GraphMixer 99.93 ± 0.01\ 99.85 ± 0.01\ 99.91 ± 0.01\ 96.31 ± 0.02\ 98.89 ± 0.02 98.39 ± 0.02\ 98.22 ± 0.02\

GraphMixer-L: GraphMixer only use link-encoder and link-classfier

GraphMixer-N: GraphMixer only use node-encoder and link-classfier
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Experiments

GraphMixer achieves outstanding performance.

Table: Comparison on the average precision score for link prediction.

Reddit Wiki MOOC LastFM GDELT GDELT-ne GDELT-e
L, T L, T T T L, N, T T N, T

JODIE 99.30 ± 0.01 98.81 ± 0.01 99.16 ± 0.01 67.51 ± 0.87 98.27 ± 0.02 97.13 ± 0.02 96.96 ± 0.02
DySAT 98.52 ± 0.01 96.71 ± 0.02 98.82 ± 0.02 76.40 ± 0.77 98.52 ± 0.02 82.47 ± 0.13 97.25 ± 0.02
TGAT 99.66 ± 0.01 97.75 ± 0.02 98.43 ± 0.01 54.77 ± 1.01 98.25 ± 0.02 84.30 ± 0.10 96.96 ± 0.02
TGN 99.80 ± 0.01 99.55 ± 0.01 99.62 ± 0.01 82.23 ± 0.50 98.15 ± 0.02 97.13 ± 0.02 96.04 ± 0.02
CAWs-mean 98.43 ± 0.02 97.72 ± 0.03 62.99 ± 0.87 76.35 ± 0.08 95.11 ± 0.12 69.20 ± 0.10 91.72 ± 0.19
CAWs-attn 98.51 ± 0.02 97.95 ± 0.03 63.07 ± 0.82 76.31 ± 0.10 95.06 ± 0.11 69.54 ± 0.19 91.54 ± 0.22
TGSRec 95.21 ± 0.08 91.64 ± 0.12 83.62 ± 0.34 76.91 ± 0.87 97.03 ± 0.61 97.03 ± 0.61 97.03 ± 0.61
APAN 99.24 ± 0.02 98.14 ± 0.01 98.70 ± 0.98 69.39 ± 0.81 95.96 ± 0.10 97.38 ± 0.23 96.77 ± 0.18
GraphMixer-L 99.84 ± 0.01 99.70 ± 0.01 99.81 ± 0.01 95.50 ± 0.03 98.99 ± 0.02 96.14 ± 0.02 98.99 ± 0.02
GraphMixer-N 99.24 ± 0.01\ 90.33 ± 0.01\ 97.35 ± 0.02\ 63.80 ± 0.03\ 94.44 ± 0.02 96.00 ± 0.02\ 98.81 ± 0.02\

GraphMixer 99.93 ± 0.01\ 99.85 ± 0.01\ 99.91 ± 0.01\ 96.31 ± 0.02\ 98.89 ± 0.02 98.39 ± 0.02\ 98.22 ± 0.02\

GraphMixer-L: GraphMixer only use link-encoder and link-classfier

GraphMixer-N: GraphMixer only use node-encoder and link-classfier
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Larger average time-gaps
Larger average node-degree
Larger maximum timestamps



Experiments

• GraphMixer enjoys better convergence and generalization ability

Experiments

GraphMixer enjoys better convergence and generalization ability.

Figure: Comparison on the training set average precision and generalization gap
for the first 100 training epochs.
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Experiments

• Optimization landscape
Experiments

(a) GraphMixer on Wiki (b) TGAT on Wiki (c) TGN on Wiki

(d) GraphMixer on
GDELT-e (e) TGAT on GDELT-e (f) TGN on GDELT-e

Figure: Comparison on the training loss landscape.
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Experiments

(a) GraphMixer on Wiki (b) TGAT on Wiki (c) TGN on Wiki

(d) GraphMixer on
GDELT-e (e) TGAT on GDELT-e (f) TGN on GDELT-e

Figure: Comparison on the training loss landscape.
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Experiments

• Optimization landscape: existing methods + fixed time-encoding function

Experiments

(a) TGAT on GDELT-e (b) TGN on GDELT-e

(c) TGAT on Wiki (d) TGN on Wiki

Figure: Comparison on the training loss landscape fixed time-encoding function.
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Future directions 
• Understand why simple temporal graph learning method work 

from using generalization theory? (In progress, under-review )

• Graph-level prediction tasks
• molecule property prediction, molecule interaction prediction
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Future directions: 
• Graph-level generation tasks
• Application: Molecule design and discovery
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Q&A time
What I have presented today:

• PhD Research
• Optimization: Sampling + Distributed learning
• Generalization: Over-smoothing related
• Privacy: Unlearning / Selective forgetting
• Model design: Temporal graph learning

• Temporal graph learning 
• Link-encoder 
• Node-encoder
• Link-classifier


