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Optimization, Generalization, Privacy, Model design

* (Theory) Due to the composite structure of empirical risks, the stochastic gradient is a
biased estimation of full-batch gradient and can be decomposed into two types of
variances. We must mitigate both types of variance to obtain faster convergence rate.
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Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi.
Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks (KDD20)



https://arxiv.org/pdf/2006.13866.pdf

Optimization, Generalization, Privacy, Model design

 (Algorithm) A decoupled variance reduction strategy that employs the dynamic
information during optimization to sample nodes
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Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi.
Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks (KDD20)
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Optimization, Generalization, Privacy, Model design

* Due to bandwidth and memory bottlenecks, sampling-based GNN training has high
overhead in “pre-processing” and “loading new samples”

* (Left figure) the fraction of computation time (on GPU) is small compared to the
sampling and time (on CPU).

* (Algorithm) Perform node sampling periodically and recycling the sampled nodes to
mitigate data preparation overhead, as shown in the right figure.
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Morteza Ramezani*, Weilin Cong*, Mehrdad Mahdavi, Anand Sivasubramaniam, Mahmut Kandemir.
GCN meets GPU: Decoupling "When to Sample" from "How to Sample” (NeurIPS20)



https://proceedings.neurips.cc/paper/2020/hash/d714d2c5a796d5814c565d78dd16188d-Abstract.html

Optimization, Generalization, Privacy, Model design

* (Theory) We show that under mild conditions on the gap between two sampling periods,
by reducing the variance of inner layer sampling, the same convergence rate as the
underlying sampling method can be achieved.

« “Reducing the variance of inner layer sampling” refer to fixing the inner layer nodes while
reciclini to those sampled at the beginning of recycling stage, but only _
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GCN meets GPU: Decoupling "When to Sample" from "How to Sample” (NeurIPS20)
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Optimization, Generalization, Privacy, Model design

 Partitioning the original graph into multiple subgraphs, each subgraph is trained on
single local machine with periodic parameter averaging. However, graph partitioning will
lead to subgraphs with edges spanning subgraphs.
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Morteza Ramezani*, Weilin Cong*, Mehrdad Mahdavi, Mahmut Kandemir, Anand Sivasubramaniam.
Learn Locally, Correct Globally: A Distributed Algorithm for Training Graph Neural Networks. (ICLR22)



https://openreview.net/forum?id=FndDxSz3LxQ

Optimization, Generalization, Privacy, Model design

* (Algorithm) We propose to locally train the model on each local machine for several

epochs, then perform server correction (i.e., Fefine the model) to mitigate the gradient
bias issue.
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Learn Locally, Correct Globally: A Distributed Algorithm for Training Graph Neural Networks. (ICLR22)
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Optimization, Generalization, Privacy, Model design

» Performance degradation in deeper GNN is commonly explained by “over-smoothing ”,

* Over-smoothing: The node representation becomes indistinguishable after too many
graph convolutional layers. As a result, the classifier has difficulty assigning the correct

label for each node if over-smoothing happens.

» However, we argue that “over-smoothing” not necessarily happen in practice.
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Weilin Cong, Morteza Ramezani, Mehrdad Mahdavi. On Provable Benefits of Depth in Training Graph Convolutional Networks. (NeurIPS21)



https://openreview.net/forum?id=r-oRRT-ElX

Optimization, Generalization, Privacy, Model design

« Review theoretical analysis on over-smoothing papers, we mathematically show that over-
smoothing is mainly an artifact of theoretical analysis and the assumptions made in
analysis that never hold in practice;

* The “assumptions” such as:
* GNN is linear with single weight matrix but many graph convolutions

* (singular value of weight parameters) X (singular value of graph Laplacian) < 1
< 2 — matrix concentration 0.99 = 1 — real-world graphs are sparse

» We provide different view by analysis the impact of GNN structure on the generalization.
We use uniform stability for theoretical analysis: APPNP < GCNII < GCN < ResGCN
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Optimization, Generalization, Privacy, Model design

» Graph representation unlearning (i.e., selected forgetting) is challenging due to node

dependency.
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Existing unlearning methods are designed for setting where loss function can be

Weilin Cong, Mehrdad Mahdavi. Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection. (AISTATS23)



https://congweilin.github.io/CongWeilin.io/files/Projector.pdf

Optimization, Generalization, Privacy, Model design

* (Algorithm) We propose to unlearn by projecting the weight parameters of the pre-trained
model onto a subspace that is irrelevant to features of the nodes to be forgotten.

« (Theory) We theoretically upper bound the distance between the unléarned weight!
to the weight parameters obtained by re-training on the new dataset without

the deleted nodes.
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Optimization, Generalization, Privacy, Model design

« Use Transformer for temporal graph learning.
* (Algorithm) We propose a scalable Transformer-like temporal graph learning method

* (Theory) To improve the generalization ability, we introduce self-supervised pre-training
task and show that jointly optimizing them results in a smaller Bayesian error via an
information theoretic analysis
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Weilin Cong, Yanhong Wu, Yuandong Tian, Mengting Gu, Yinglong Xia, Jason Chen, Mehrdad Mahdavi
DyFormer : A Scalable Dynamic Graph Transformer with Provable Benefits on Generalization Ability. (SDM23)



https://congweilin.github.io/CongWeilin.io/files/DyFormer_SDM23.pdf

Optimization, Generalization, Privacy, Model design

» Design neural architecture for temporal graph learning (TGL).

* (Experiments) RNN and self-attention mechanism (SAM) are the de facto standard for
TGL. Although both RNN and SAM could lead to good performance, in practice neither of

them is always necessary.

 (Algorithm) We propose a conceptually and technically simple architecture, which attains
an outstanding performance with faster convergence and better generalization ability.
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Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, Mehrdad Mahdavi
Do We Really Need Complicated Model Architectures For Temporal Networks? (ICLR23 Oral)



https://openreview.net/forum?id=ayPPc0SyLv1

Summarization on research visions

« What makes my research different from others?
* (1) Fundamental problems > Specific applications
* (2) Theoretical analysis & Empirical evaluation & Model design

* (3) Rethink the apparent consensus > Following the apparent consensus:

* (Generalization) “Over-smoothing” not necessarily happen in practice,
performance degradation issue is due to generalization

e (Privacy) Differential privacy (DP)-based unlearning might fail and
results in poor performance, we propose a theory guided Projection-
based unlearning method

* (Model design) Intuitively, RNN and self-attention is suitable for
temporal graph. However, we found that RNN and self-attention free
method could achieve better performance.
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Background

« Temporal network structure:

tO t t2 t3 t t t6 node
(now) Q @) @) @) (Z)Jl ()Eg_ﬁ (past) Node features @ X7

to
tl , t5 ) )
Temporal graph @ U2 @ @ 7o @ Link features (V1) ¢q, t5 @ xlf,%k(tl), le,%k(t5)

t37t4

* Goal: prediction if v;, v; interact at t, based on all the available temporal
graph information during {t, ..., ts}

 Application: recommender system, traffic prediction



Motivation

« Existing works: RNN and self-attention mechanism (SAM) are the de
facto standard for temporal graph learning, e.g.,

« JODIE: Inputs > RNN + Memory blocks
 TGAT: Inputs - Self-attention mechanism
« TGN: Inputs > RNN + Memory blocks - Self-attention mechanism

 Indeed, such architecture design matches our intuition

e It has the following drawbacks:

» These methods are conceptually and technically complicated with
advanced model architecture, which is hard to implement

- Hard to understand which parts of the model truly contribute to its
success, and whether these components are indispensable



Rethinking ...

* Q: Are RNN and self-attention indispensable for TGL?

* A: Not really ...
» We propose GraphMixer that based entirely on the MLPs and neighbor mean-pooling;

« GraphMixer achieves SOTA performance with even smaller computation cost and
number of parameters
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Link-encoder, Node-encoder, Link-classifier

 Design to summarize the temporal link information (link timestamps and
link features) with each node sorted by timestamps.

 To distinguish different timestamps, we introduce our time-encoding
function cos(tw) to encode each timestamps into d-dimensional vector,
where w = {a~(~V/B1¢ _ is fixed not trainable
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« Our time-encoding function enjoys two properties:

 Similar timestamps have similar time-encodings (e.g., the plot of t{, t,)

» The larger the timestamps, the later the values in time-encodings convergence to +1.
(e.g., the plot of t;,t3 and t4, t,)



Quick experiment on time-encoding function

 Existing works leverage a trainable time-encoding function z(t) =
cos(tw + b) to represent timestamps.

« However, trainable time- encodlngt fli%ctlon could cause instability during
training because its gradient 0 costiw+h) _ tx sin(tw + b) scales

proportional to the tlmestamps
Comparison between Grad / Params Comparison between accuracy
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e Setup: given any t4, t, € [0, 10°], our goal is to classify if t; > t, by learning
a linear classifier on [z(tl) | z(tz)]

* Results: we give the and
at each iteration. We can observe that trainable time-encoding function
suffer from training instability issue.



Quick experiment on time-encoding function

« Meanwhile, we compare the parameter trajectories of the two models:
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« We observe that the change of parameters on the trainable time-encoding
function is drastically larger than our fixed version

A huge change in weight parameters could deteriorate the model
performance

Table: Comparison on average precision score with fixed/trainable time encoding
function. “Trainable” — “Fixed”.
Reddit Wiki MOOC LastFM GDELT-ne GDELT-e

JODIE 99.30 — 99.76 98.81 — 99.00 99.16 — 99.17 67.51 — 79.89 97.13 — 98.23 96.96 — 96.96
TGAT 98.66 — 99.48 96.71 — 98.55 98.43 — 99.33 54.77 — 76.26 84.30 — 92.31 96.96 — 96.28
TGN 99.80 — 99.83 99.55 — 99.54 99.62 — 99.62 82.23 — 87.58 98.15 — 98.25 96.04 — 97.34




Link-encoder, Node-encoder, Link-classifier

« To summarize the temporal link information, we use 1-layer MLP

Time encoded by cos(tw) € R1°° _ - _ ) 1—layer MLP-Mixer
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« To summarize the temporal link information of a node,

« Firstly, we encode timestamps by our time-encoding function, then
concatenate it with its corresponding link features

« Then, we stack all the outputs into a big matrix and zero-pad to the
fixed length K

 Finally, we use a 1-layer MLP-mixer with mean-pooling to compress it
into a single vector



Quick experiments on link-encoder

* Q2: Can we replace the MLP-mixer in link-encoder with self-attention?

« We test by replacing the MLP-mixer in link-encoder with

 Full self-attention / 1-hop self-attention
« Sum pooling / mean-pooling

?

Link-info encoder with Reddit Wiki MOOC LastFM GDELT-ne
(Default) MLP-mixer + Zero-padding 99.93 99.85 99.91 96.31 98.39
Full self-attention + Sum pooling 99.81 98.19 99.55 93.97 08.28
+ Mean pooling 99.00 98.05 99.31 89.15 07.13
1-hop self-attention + Sum pooling  99.81 98.01 99.30 93.69 08.16
+ Mean pooling 98.94 97.29 08.96 72.32 97.09

» Performance drop when using self-attention:
» The best performance is achieved when using MLP-mixer with zero-padding;
« The model performance drop slightly when using self-attention with sum-pooling (2" and 4 row)
« The performance drop significantly when using self-attention with mean pooling (37 and 5t row)



Quick experiments on link-encoder

?
3\ * Q3: Self-attention with mean-pooling has a weaker model performance?

» It cannot distinguish “temporal sequence with identical link timestamps
and link features”. For example, it cannot distinguish [a{, a;] and [a4];

e It cannot explicitly capture “the length of temporal sequence”. For
example, it cannot distinguish if [a4, a,] is longer than [a;];
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Number of epochs Number of epochs
(a) e.g., classify if [a1, a1] = [a1] (b) e.g., classify if size[a1, az] > size[as]

These properties are very important to understand how frequent a node
interacts with other nodes - related to the input data.



Different inputs between ours and others

« Temporal graph as undirected vs directed graph

* Most of the existing works consider temporal graphs as directed graphs with
information only flows from the source nodes to the destination nodes

« However, we consider the temporal graph as undirected graph

* By doing so, if two nodes are frequently connected in the last few timestamps, the
“most recent 1-hop neighbors” sampled for the two nodes on the “undirected”
temporal graph would be similar

1 t1
N (v1) = {va2(t1), va(t2)} N (v1) = {va(t1), va(t2)}
N(v2) = {} N (v2) = {vi(t1),v1(t2)}
to to

* Intuitively, if two nodes are frequently connected in the last few
timestamps, they are also likely to be connected in the recent future



Link-encoder, Node-encoder, Link-classifier

* Node encoder is designed to capture the node identity and node feature
information via neighbor mean-pooling (i.e., 1-hop SIGN features)

* NV(v;; t, ty) as 1-hop neighbor of node v; with link timestamps from t to ¢,

« Then, the node information features are computed based on the 1-hop
neighbor by
s;(to) = aode + Mean{x}”de | v E N(vi;t9 — T, to)}

Node features Link features Timestamps

K/
Time-encoding
Node-encoder function

Link-encoder ) MLP

MLP

Link-classifier

|
MLP



Link-encoder, Node-encoder, Link-classifier

 Link-classifier is computed by applying 2-layer MLP model on the
concatenated output of node-encoder and link-encoder

MLP ™
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Experiments

« GraphMixer achieves outstanding performance

« Two variant of GraphMixer:

« GraphMixer-L: only use link-encoder + link-classifier
« GraphMixer-N: only use node-encoder + link-classifier

Table: Comparison on the average precision score for link/prediction.

Reddit Wiki MOOC LastFM GDELT GDELT-ne GDELT-e
L, T L, T T T L,N, T T N, T
JODIE 99.30 +0.01 98.81+0.01 99.16+0.01 | 67.51 £0.87 98.27 £0.02 97.13+0.02 96.96 + 0.02
DySAT 98.52 +0.01 96.71+0.02 98.82+0.02 | 76.40 £0.77 98.52+0.02 82.47+0.13 97.25+ 0.02
TGAT 99.66 + 0.01 97.75+0.02 98.43+0.01 | 54.77 £1.01 98.25+0.02 84.30+0.10 96.96 + 0.02
TGN 99.80 +0.01 99.55+0.01 99.62+0.01 | 82.23 +£0.50 98.15+0.02 97.13+0.02 96.04 + 0.02
CAWs-mean  98.43+0.02 97.72+0.03 62.99+0.87 | 76.35+£0.08 95.11 +0.12 69.20+0.10 91.72+0.19
CAWs-attn 98.51 +0.02 97.95+0.03 63.07+0.82 | 76.31 +£0.10 95.06 +0.11 69.54+0.19 91.54 +0.22
TGSRec 95.21 +0.08 91.64 +0.12 83.62+0.34 | 76.91 +£0.87 97.03+0.61 97.03+0.61 97.03+0.61
APAN 99.24 +0.02 98.14+0.01 98.70+0.98 | 69.39 +0.81 95.96 +0.10 97.38+0.23 96.77 &+ 0.18
GraphMixer-L  99.84 +0.01 99.70 £0.01 99.81+0.01 | 95.50 £0.03 98.99 +£0.02 96.14 +£0.02 98.99 + 0.02
GraphMixer-N  99.24 + 0.017 90.33 4+ 0.01% 97.35 + 0.027 | 63.80 + 0.03" 94.44 +0.02 96.00 & 0.02% 98.81 + 0.02"
GraphMixer ~ 99.93 +0.01% 99.85+ 0.01% 99.91 +0.01% | 96.31 4+ 0.02¢ 98.89 + 0.02 98.39 4 0.027 98.22 + 0.02"




Experiments

« GraphMixer enjoys better convergence and generalization ability
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Figure: Comparison on the training set average precision and generalization gap
for the first 100 training epochs.



Experiments

(d) Gra phMi'xer on

(f) TGN on GDELT-e

(e) TGAT on GDELT-e



Experiments

« Optimization landscape: existing methods + fixed time-encoding function

(a) TGAT on GDELT

-€

(d) TGN on Wiki

(c) TGAT on Wiki



Future directions

» Understand why simple temporal graph learning method work
from using ?( ) =

» Graph-level prediction tasks
« molecule property prediction, molecule interaction prediction

GNN( 17+ )

GNN( GO, T0-¢)

)
)



Future directions:

« Graph-level generation tasks
 Application: Molecule design and discovery
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Q&A time

What I have presented today:

* PhD Research @
« Optimization: Sampling + Distributed learning
 Generalization: Over-smoothing related O

 Privacy: Unlearning / Selective forgetting
« Model design: Temporal graph learning

» Temporal graph learning
« Link-encoder
* Node-encoder
« Link-classifier



