
On Provable Benefits of Depth in Training 
Graph Convolutional Networks

Motivation
GNNs are known to suffer from performance degradation issue as the 
number of layers increases, which is usually attributed to over-smoothing. 
However, we argue that over-smoothing does not necessarily happens in 
practice, a deeper model can still achieve very high training accuracy if 
properly trained, but generalize poorly during the evaluation stage.
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Q1: Does increasing the depth really impair the 
expressive power of GCNS? 
We start by reviewing existing results on over-smoothing.

Over-smoothing [1] is defined as a phenomenon where all node embeddings 
converge to a single vector after applying multiple graph convolution 
operations to the node features. However, they only consider graph
convolution without non-linearity and per-layer weight matrices.

We measure the pairwise distance between node embeddings, we observe 
that:
• From left figure, without non-linearity and weight matrices, the pairwise 

distance is indeed decrease as the number of layers increases.
• However, from the right figure, if considering the weight matrices and

non-linearity, the pairwise distance is increasing after a certain depth,
which contradict the definition of over-smoothing.

𝐇(ℓ) = 𝐋𝐇(ℓ$%) , 𝐇(&) = 𝐗 𝐇(ℓ) = 𝜎(𝐋𝐇 ℓ$% 𝐖(ℓ)), 𝐇(&) = 𝐗

[2] generalize the idea of over-smoothing by takes non-linearity and weight 
matrices into consideration, under the notation of expressive power:

• Expressive power 𝑑ℳ(𝐇(ℓ)) is measure by the distance of node 
embeddings 𝐇(ℓ) to a subspace ℳ that only has node degree information.

• Let 𝜆𝐿 as the second largest eigenvalue of Laplacian, 𝜆𝑊 as  the largest 
singular value of weight matrices.

• They show 𝑑ℳ 𝐇 ℓ ≤ 𝜆𝐿𝜆𝑊 ℓ 𝑑ℳ 𝐇 0 , i.e., the expressive power will 
be exponentially decreasing as the number of layers increases under the 
assumption that 𝜆(𝜆) < 1 holds.

However, we argue that the assumption 𝜆(𝜆) < 1 not always hold.

From the theoretical perspective: 
• Let assume weight matrices 𝑊(ℓ) ∈ ℝ𝑑ℓ−1×𝑑ℓ is initialized by uniform 

distribution 𝒩(0, 1/𝑑ℓ−1). By the Gordon’s theorem for Gaussian 
matrices, we know that the expected largest singular value is bounded by 
𝔼 𝜆𝑊 ≤ 1 + 𝑑ℓ/𝑑ℓ−1. This also hold for other initializations. The above 
discussion also hold for other initialization methods.

• Real-world graphs are sparse, 𝜆𝐿is close to 1. For example, Cora 
𝜆𝐿=0.9964, Citeseer 𝜆𝐿=0.9987, PubMed 𝜆𝐿=0.9905 

Empirical test on real world dataset:
• On the untrained model, as the number of layers increases, the distance 
𝑑ℳ(𝐇(ℓ)) is indeed decreasing.

• However, on the trained model, as the number of layers increases, the 
distance 𝑑ℳ(𝐇(ℓ)) is increasing, which indicate the expressive power of 
GNN is not always decreasing as stated in the existing theoretical 
analysis.

We argue that a well-trained deep GCN is at least as powerful as a shallow 
one:
• By leveraging the connection between GCN and WL-test, in Theorem 1, 

we can show deeper GCNs have stronger expressive power than the 
shallow GCNs.

• Furthermore, we also provides the global convergence of GCNs in 
Theorem 2, which shows that deeper GCNs can still converge to its global 
optimal with linear convergence rate.

However, it is still unclear why a deeper GCN has worse performance than a 
shallow one during evaluation phase.

Q2: If GCN is expressive, why then deep GCNs generalize 
poorly?

To answer this question, we provide a different view by analyzing the 
impact of GCN strictures on the generalization.

Interestingly, we observe that
• (Theorem 4) The existing methods that originally designed to alleviate 

the over-smoothing issue (e.g., SGC, APPNP, GCNII, DropEdge, 
PairNorm) all enjoys a better generalization power than classical GCN

• (Appendix E.3 and E.4) Besides, according to our empirical results, 
adding DropEdge/PairNorm is actually hurting the training accuracy 
(i.e., not solving over-smoothing) but reduce the generalization gap, 
therefore leads to a better results during evaluation.

Based on our generalization analysis, we propose Decoupled GCN, with the 
following forward propagation rule.

• 𝛼ℓ, 𝛽ℓ are trainable parameters
• 𝐏 = 𝐃−1/2𝐀𝐃−1/2 and 𝐏ℓ stands for 𝐏 to the power of ℓ

Z =
L
∑

!=1

α!f
(!)(X), f (!)(X) = P

!
X

(

β!W
(!) + (1− β!)I)

)


