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Motivation

Training GNNs on large graphs remains challenging, due to

The limited resource (e.g., memory/computaধon power) of the exisধng servers

The privacy concern due to the centralized storage and model learning

One potenধal soluধon to tackle these limitaধons is employing distributed training with data par-

allelism.
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Figure 1. Comparison of the speedup and the memory consumpধon of distributed mulধ-machine training and

centralized single machine training on the Reddit dataset.

Main challenges

Employing distributed training on graph needs to parধধon graphs into subgraph, which results in

edges spanning subgraphs (cut-edges)
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Figure 2. An illustraধon of distributed GNN training on Karate graph and cut-edges (edges that have nodes with

different colors).

Ignoring the cut-edges will hurt performance. Considering the cut-edges will results in high com-

municaধon cost.

Parallel SGD with Periodic Averaging (PSGD-PA): ignore cut-edges

Global Graph Sampling (GGS): consider cut-edges

(a) (b)
Figure 3. Comparison of (a) the validaধon F1-score and (b) the average data communicated per round (in bytes and

log-scale) for two different distributed GNN training seষngs.

Method

To reduce the communicaধon overhead, we propose Local Training with Periodic Averaging (i.e.,

PSGD-PA with carefully chosen #iters between local-server communicaধon). Each local machine

locally trains a GNN model by ignoring the cut-edges

sends the trained model to the server for periodic model averaging

receives the averaged model from server to conধnue the training
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Figure 4. Local Training with Periodic Averaging.

By doing so

We eliminate the features exchange phase between server and local machines,

BUT it can result in a significant performance degradaধon due to the lack of the global graph

structure and the dependency between nodes among different machines.
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Figure 5. Ignore cut-edges will result in performance degradaধon.

To compensate for this error, we propose a Global Server Correcধon scheme to

take advantage of the available global graph structure on the server

refine the averaged locally learned models before sending it back to each local machine.
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Figure 6. Our proposal: Local Learning Correct Globally.

Theoretical analysis

We provide the first theoreধcal analysis on the convergence of distributed training for GNNs with

periodic averaging:

We show that solely averaging the local machine models and ignoring the global graph

structure will suffer from an irreducible residual error.

Theoretical analysis

We provide the first theoretical analysis on the convergence of distributed

training for GNNs with periodic averaging:

We show that solely averaging the local machine models and ignoring

the global graph structure will su↵er from an irreducible residual error.

Theorem (Distributed GCN via Parameter Averaging)

Consider applying model averaging for GNN training under assumptions on

stochasitc gradient variance. If we choose learning rate ⌘ =

p
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Then, we show that LLCG enjoys the convergence rate that matches the rate of FedAvg on a

general (not specific for GNN training) non-convex opধmizaধon seষng.

Theoretical analysis

Then, we show that LLCG enjoys the convergence rate that matches

the rate of FedAvg on a general (not specific for GNN training)

non-convex optimization setting.

Theorem (Local Learning Correct Globally)

If we choose learning rate ⌘ =

p
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T
, the local step size K , ⇢ such that
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Experiment results

Table 1. (Part of results) Comparison of performance and the average Megabytes of node representaধon/feature

communicated per round on various datasets.

Method No.
Comm.

GCN / SAGE GAT APPNP

Performance Avg. MB Performance Avg. MB Performance Avg. MB

OGB-Proteins
(ROC-AUC)

PSGD-PA

100

72.85±0.70 6.20 64.95±1.01 3.14 71.10±0.79 7.31
GGS 74.78±0.36 922.42 68.11±0.60 912.79 71.29±0.31 917.20
LLCG 73.92±0.45 6.20 67.62±0.58 3.14 71.18±0.43 7.31

OGB-Arxiv
(F1-score)

PSGD-PA

100

69.43±0.21 3.55 69.88±0.18 3.59 68.48±0.17 7.71
GGS 70.51±0.26 3391.03 70.82±0.23 3396.79 69.01±0.10 3394.33
LLCG 70.21±0.13 3.55 70.58±0.37 3.59 68.73±0.29 7.71

Fully-sync vs LLCG: save accuracy but less ধme

PSGD-PA vs LLCG: similar ধme but beħer accuracy

Figure 7. Compare validaধon accuracy and computaধon ধme.
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