
GraphEditor: An Efficient Graph Representation Learning

and Unlearning Approach

Weilin Cong∗ Mehrdad Mahrdavi

Abstract

As graph representation learning has received much attention due to its widespread applications,
removing the effect of a specific node from the pre-trained graph representation learning model due
to privacy concerns has become equally important. However, due to the dependency between nodes
in the graph, graph representation unlearning is notoriously challenging and still remains less well
explored. To fill in this gap, we propose GraphEditor, an efficient graph representation learning
and unlearning approach that supports node/edge deletion, node/edge addition, and node feature
update for linear-GNN. Compared to existing unlearning approaches, GraphEditor requires
neither retraining from scratch nor of all data presented during unlearning, which is beneficial for
the settings that not all the training data are available to retrain. Besides, since GraphEditor is
exact unlearning, the removal of all the information associated with the deleted nodes/edges can be
guaranteed. Empirical results on real-world datasets illustrate the effectiveness of GraphEditor
for both node and edge unlearning tasks. The code can be found in supplementary.

1 Introduction

In recent years, graph representation learning has been recognized as a fundamental learning problem
and has received much attention due to its widespread use in various domains, including social
network analysis [Kipf & Welling(2017)Kipf and Welling, Hamilton et al.(2017)Hamilton, Ying, and
Leskovec], traffic prediction [Cui et al.(2019)Cui, Henrickson, Ke, and Wang, Rahimi et al.(2018)Rahimi,
Cohn, and Baldwin], knowledge graphs [Wang et al.(2019a)Wang, Zhang, Zhang, Leskovec, Zhao,
Li, and Wang, Wang et al.(2019b)Wang, He, Cao, Liu, and Chua], and recommender systems [Berg
et al.(2017)Berg, Kipf, and Welling, Ying et al.(2018)Ying, He, Chen, Eksombatchai, Hamilton,
and Leskovec]. However, due to the increasing concerns on data privacy, removing the effect of a
specific data point from the pre-trained model has become equally important. Recently, “Right to be
forgotten” [Wikipedia contributors(2021)] empowers the users the right to request the organizations or
companies to have their personal data be deleted in a rigorous manner. For example, when Facebook
users deregister their account, users not only can request the company to permanently delete the
account’s profiles from the social network, but also require the company to eliminate the impact of
the deleted data on any machine learning model trained based on the deleted data, which is known as
machine unlearning [Bourtoule et al.(2021)Bourtoule, Chandrasekaran, Choquette-Choo, Jia, Travers,
Zhang, Lie, and Papernot].

One of the most straightforward unlearning approaches is to retrain the model from scratch using the
remaining data, which could be computationally prohibitive when the dataset size is large or infeasible
if not all the data are available to retrain. Recently, many efforts have been made to achieve efficient
unlearning, which can be roughly classified into exact unlearning and approximate unlearning, each of
which has its own limitations. Exact unlearning : [Bourtoule et al.(2021)Bourtoule, Chandrasekaran,
Choquette-Choo, Jia, Travers, Zhang, Lie, and Papernot] proposes to randomly split the original dataset
into multiple disjoint shards and train each shard model independently. Upon receiving a data deletion
request, the model provider only needs to retrain the corresponding shard model. [Chen et al.(2021)Chen,
Zhang, Wang, Backes, Humbert, and Zhang] extends [Bourtoule et al.(2021)Bourtoule, Chandrasekaran,
Choquette-Choo, Jia, Travers, Zhang, Lie, and Papernot] by taking the graph into consideration for
data partition. However, splitting too many shards could hurt the model performance due to the data
heterogeneity and lack of training data for each shard model [Ramezani et al.(2021)Ramezani, Cong,

∗wxc272@psu.edu

1

wxc272@psu.edu

Mahdavi, Kandemir, and Sivasubramaniam]. On the other hand, too few shards result in retraining on
massive data, which is computationally prohibitive; Approximate unlearning : [Guo et al.(2020)Guo,
Goldstein, Hannun, and Van Der Maaten, Chien et al.(2022)Chien, Pan, and Milenkovic] proposes to
approximate the unlearned model using first-order Taylor-expansion, [Golatkar et al.(2020)Golatkar,
Achille, and Soatto] proposes to fine-tune with Newton’s method on the remaining data, and [Wu
et al.(2020a)Wu, Dobriban, and Davidson] proposes to transfer the gradient computed at one weight
to another and retrain the model from scratch with lower computational cost. Since approximate
unlearning lacks guarantee on whether all information associated with the deleted data are eliminated,
these methods require injecting random noise, which can significantly hurt the model performance.
Employing graph representation unlearning is even more challenging due to the dependency between
nodes that are connected by edges. We not only need to remove the information related to the deleted
nodes, but also need to update its impact on neighboring remaining nodes of multi-hops. Since most of
the existing unlearning methods only support data deletion, extending their application to graphs is
non-trivial. Motivated by the importance and challenges of graph representation unlearning, we aim at
answering the following two questions:

Q1: Can approximate unlearning methods remove all information related to the deleted data? To
verify this, we introduce “deleted data replay test” to validate the effectiveness of unlearning in Section 5.
Specifically, we add an extra-label category and change all deleted nodes to this extra-label category.
To better distinguish deleted nodes from others, an extra binary feature is appended to all nodes and
set the extra binary feature as “1” for the deleted nodes and as “0” for other nodes. We first pre-train
the model on the dataset with extra label and feature, then we evaluate the effectiveness of unlearning
method by comparing the number of the deleted nodes that are predicted as the extra-label category
before and after the unlearning process. Intuitively, an effective unlearning method should unlearn all
the knowledge related to the additional category and binary feature, a model after unlearning should
never predict a node as the additional category. However, according to our observation, approximate
unlearning fails to remove all information related to the deleted data, which motivates us to design an
efficient exact graph representation unlearning method.

Q2: If not, can we design an efficient exact graph representation unlearning method? We propose
an exact graph learning and unlearning algorithm GraphEditor which can efficiently update the
parameters with provable low time complexity. GraphEditor not only supports node/edge deletion,
but also node/edge addition and node feature update. The key idea of GraphEditor is to reformulate
the ordinary GNN training problem as an alternative problem with the closed-form solution. Upon
receiving a deletion request, GraphEditor takes the closed-form solution as input and quickly updates
the model parameters only based on a small fraction of nodes in the neighborhood of the deleted
node/edge. Comparing to retraining from the scratch, GraphEditor only requires less data with a
single step of computation, which is more suitable for the online setting that requires the model provider
to immediately get the unlearned model or not all the training data are available to retrain. Comparing
to existing exact unlearning methods GraphEraser [Chen et al.(2021)Chen, Zhang, Wang, Backes,
Humbert, and Zhang], GraphEditor enjoys a better performance since the unlearned model does not
suffer from data heterogeneity and lack of training data on each shard model. Comparing to approximate
unlearning method Influence [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten] and
Fisher [Golatkar et al.(2020)Golatkar, Achille, and Soatto], GraphEditor guarantees removing all
information related to deleted nodes/edges and does not require integrating differential privacy noise to
prevent information leakage after unlearning.

Contributions. We summarize our contributions as follows: 1 We introduce “deleted data reply
test” to validate the effectiveness of unlearning methods and illustrate the insufficiency of approximate
unlearning methods for removing all information related to the deleted nodes/edges. 2 We introduce a
graph representation learning and unlearning approach GraphEditor on linear-GNNs, which supports
node/edge deletion, node/edge addition, and node feature update. 3 To improve the scalability and
expressiveness, we introduce subgraph sampling and the non-linearity extension of GraphEditor. 4
Empirical studies on real-world datasets that illustrates its effectiveness.

2

2 Related works

Exact machine unlearning. Exact unlearning aims to produce the performance of the model trained
without the deleted data. The most straightforward way is to retrain the model from scratch, which is
in general computationally demanding, except for some model-specific or deterministic problems such
as SVM [Cauwenberghs & Poggio(2001)Cauwenberghs and Poggio], K-means [Ginart et al.(2019)Ginart,
Guan, Valiant, and Zou], and decision tree [Brophy & Lowd(2021)Brophy and Lowd]. Recently, efforts
have been made to reduce the computation cost for general gradient-based training problems. For
example, [Bourtoule et al.(2021)Bourtoule, Chandrasekaran, Choquette-Choo, Jia, Travers, Zhang, Lie,
and Papernot] proposes to split the dataset into multiple shards and train an independent model on
each data shard, then aggregate their prediction during inference. The data partition schema allows
for an efficient retrain of models on a smaller fragment of data. However, the model performance
suffers because each model has fewer data to be trained on and data heterogeneity can also deteriorate
the performance. Besides, GraphEraser [Chen et al.(2021)Chen, Zhang, Wang, Backes, Humbert,
and Zhang] extends [Bourtoule et al.(2021)Bourtoule, Chandrasekaran, Choquette-Choo, Jia, Travers,
Zhang, Lie, and Papernot] to graph-structured data by proposing a graph partition method that
can preserve the structural information as much as possible and weighted prediction aggregation for
inference. [Ullah et al.(2021)Ullah, Mai, Rao, Rossi, and Arora] proposes to train the model using
mini-batch SGD and save the model parameters at each iteration. When receiving the deletion requests,
retraining only starts at the iteration that deleted data first time appears. [Neel et al.(2020)Neel, Roth,
and Sharifi-Malvajerdi, Ullah et al.(2021)Ullah, Mai, Rao, Rossi, and Arora, Sekhari et al.(2021)Sekhari,
Acharya, Kamath, and Suresh] study the unlearning from the generalization theory perspective, which
is not the main focus of this paper.

Approximate machine unlearning. Influence [Guo et al.(2020)Guo, Goldstein, Hannun, and
Van Der Maaten] proposes to unlearn by removing the influence of the deleted data on the model
parameters. Formally, let Dd ⊂ D denote the deleted subset of training data, Dr = D \ Dd denote the
remaining data, L(w) is the objective function, and w is the model parameters before unlearning. Then,
Influence unlearn by wu = w +H−1

r gd, which is derived from the first-order Taylor approximation
on gradient, where wu is the parameters after unlearning, Hr = ∇2L(w,Dr) is the Hessian computed
on the remaining data, and gd = ∇L(w,Dd) is the gradient computed on the deleted data. To mitigate
the potential information leakage, Influence utilizes a perturbed objective function L(w) + b⊤w,
where b is the random noise. [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten]
requires the objective function be i.i.d., extending its application on graph is non-trivial because nodes
in graph are non-i.i.d due to node dependency (details in Appendix E). [Chien et al.(2022)Chien,
Pan, and Milenkovic] extends the analysis of [Guo et al.(2020)Guo, Goldstein, Hannun, and Van
Der Maaten] to graph. A similar idea is explored in [Wu et al.(2022)Wu, Hashemi, and Srinivasa].
Fisher [Golatkar et al.(2020)Golatkar, Achille, and Soatto] performs Fisher forgetting by taking a
single step of Newton’s method on the remaining training data, then performing noise injection to
model parameters to mitigate the potential information leaking. The model parameters after unlearning
is given by wu = w −H−1

r gr +H
−1/4
r b, where Hr = ∇2L(w,Dr) is Hessian and gr = ∇L(w,Dr) is

gradient computed on the remaining data Dr, and b is the random noise. [Golatkar et al.(2021)Golatkar,
Achille, Ravichandran, Polito, and Soatto] generalizes the idea to deep neural networks by assuming
a subset of training samples are never forgotten, which can be used to pre-train a neural network as
feature extractor, and only unlearn the last layer. [Wu et al.(2020a)Wu, Dobriban, and Davidson]
proposes to save all the intermediate weight parameters wt and gradients ∇L(wt,D) during training.
Then, these information will be used to efficiently estimate the optimization path of strongly convex
and smooth objective function after unlearning, which results in very limited applications. [Khan &
Swaroop(2021)Khan and Swaroop] proposes knowledge-adaptation priors to reduce the cost of retraining
by enabling adaptation for a wide variety of tasks and models. Similar ideas are explored in [Ginart
et al.(2019)Ginart, Guan, Valiant, and Zou] for K-means and [Wu et al.(2020b)Wu, Tannen, and
Davidson] for logistic regression. [Wang et al.(2021a)Wang, Guo, Xie, and Qi] observes that different
channels have a varying contribution to different categories in image classification. Inspired by this
observation, [Wang et al.(2021a)Wang, Guo, Xie, and Qi] proposes to quantize the class discrimination
of channels and prune the most relevant channel of the target category to unlearn its contribution to the
model. [Izzo et al.(2021)Izzo, Smart, Chaudhuri, and Zou] propose approximate data deletion method,
which has a time complexity that is linear in the dimension of the deleted data and is independent

3

1

2 4

3

5

6

1

2 4

3

5

6

Before unlearning After unlearning

Delete node 1

!1 3

Deleted node
Affected nodes
Not affected nodes

h
(1)
i = σ

 ∑

j∈N (vi)

αijh
(0)
j W

 , αij =

1√
deg(vi) deg(vj)

Figure 1: An illustration of how output of a 1-Layer GCN is affected after deleting the node v1.

of the size of the dataset. [Fu et al.(2022)Fu, He, and Tao, Nguyen et al.(2022)Nguyen, Oikawa,
Divakaran, Chan, and Low] study Bayesian inference unlearning, which is different from the neural
network unlearning that we focused on.

3 Preliminaries on graph representation unlearning

Problem setup. Given a graph G(V, E) with N = |V| nodes as input, let us suppose each node
vi ∈ V is associated with node feature vector h

(0)
i . Let A,D ∈ RN×N denote the adjacency matrix and

its degree matrix, and the normalized propagation matrix is defined as P = D−1/2AD−1/2. For ease of
exposition, we take semi-supervised node classification as a running example, where a subset of nodes
Vtrain ⊂ V are labeled, our goal is to predict the label for the rest nodes V \Vtrain using the information
of the labeled nodes. Please notice that GraphEditor can also be applied to link prediction task for
edge unlearning, which will be discussed in details in the appendix.

Graph neural network. The feed-forward rule in graph neural network (GNN) is defined as
H(ℓ) = σ

(
PH(ℓ−1)W(ℓ)

)
, where σ(·) is non-linear activation function, H(ℓ) denotes the hidden represen-

tation at the ℓ-th layer. Then, a linear classifier is applied to the final layer node representation H(L) for
prediction. Although GNNs have become the de-facto tool for graph representation learning, employing
unlearning strategies on the ordinary GNNs is non-trivial. This is because how to rigorously verify
data removal guarantee in non-linear models is an open problem and non-trivial to verify empirically.
Recently, linear-GNNs are proposed to remove non-linearities and only use a single-weight matrix
in the neural architecture. For example, SGC [Wu et al.(2019)Wu, Souza, Zhang, Fifty, Yu, and
Weinberger] proposes to compute the node representation by H(L) = PLH(0). By linearizing the GNNs,
these methods not only enjoy a faster training speed but also allow us rigorously theoretically and
empirically verify whether the information has been perfectly unlearned. Although lack of non-linearity,
recent studies [Wei et al.(2022)Wei, Yin, Jia, Benson, and Li, Wang & Zhang(2022)Wang and Zhang]
shows that linear-GNNs are almost as expressive as its non-linear counterparts (details in Appendix F).
Motivated by the advantages of linear-GNNs, we will first illustrating our idea on linear-GNNs in
Section 4.1 and then introduce its non-linearity extension in Section 4.4. We will rigorously test whether
the information is perfectly unlearned on linear-GNNs and also demonstrate the possibility to use
GraphEditor with non-linear GNNs.

Challenges in graph unlearning. Graph representation unlearning is challenging for the following
three main reasons: 1 High computation cost. Existing unlearning methods suffer from high compu-
tation cost. To see this, let us suppose we are training logistic regression via gradient descent, i.e.,
f(w) = −

∑N
i=1 yi logµi + (1− yi) log(1− µi), where µi = σ(w⊤xi) is the prediction and yi ∈ {0, 1} is

the ground truth label. If unlearn by re-training from scratch, it takes O(dNE) time complexity to
unlearn a single data point, where N is the number of data points, d is feature dimension, and E is
the number of epochs during training, which is infeasible if the deletion request needs to be completed
immediately. Although approximate unlearning methods can alleviate the computation burden to
some extent, the computation cost is still linear with respect to the number of nodes N . For example,
Influence and Fisher require O(Nd) to compute gradient ∇f(w) = X⊤(µ − y) and O(Nd2) to
compute Hessian ∇2f(w) = X⊤diag(µ · (1−µ))X, which could scale poorly on the large-scale datasets.

4

Algorithm 1 GraphEditor (Numpy-like pseudo-code)

Input: X as the output of GNNs, Y as the label matrix
(Before unlearning) Compute the closed-form solution
>>> S, W = find_W(X, Y)
def find_W(X, Y, reg=0):

XtX = X.T@X + reg*numpy.eye(X.shape[0]), S = numpy.linalg.inv(XtX), W = S@X.T@Y
return S, W

(GraphEditor) Step 1: Delete information
>>> S, W = remove_data(X[Vrm ∪ Vupd], Y [Vrm ∪ Vupd], S, W)
def remove_data(X, Y, S, W):

I = numpy.eye(X.shape[0])
A = S@X.T, B = numpy.linalg.inv(I - X@S@X.T), C = Y - X@W, D = X@S
return S + A@B@D, W - A@B@C

(GraphEditor) Step 2: Update information. X̃ computed on updated graph.

>>> S, W = add_data(X̃[Vupd], Y [Vupd], S, W)
def add_data(X, Y, S, W):

I = numpy.eye(X.shape[0])
A = S@X.T, B = numpy.linalg.inv(I + X@S@X.T), C = Y - X@W, D = X@S
return S - A@B@D, W + A@B@C

(Optional) Fine-tune W using cross-entropy loss

2 Non-triviality of extension to graph domain. Most existing unlearning methods only support data
deletion, however, graph representation unlearning also requires updating the effect of the deleted
nodes to its neighborhood due to the convolution operation on graph. For example, as shown in
Figure 1, let us suppose our goal is to unlearn the effect of node v1 on a pre-trained 1-layer GCN.
After removing node v1, the node representation of node {v2, v3, v4} are also affected due to the change
of edge weight αij and the deletion of node v1’s feature. Therefore, a proper graph representation
unlearning algorithm not only need to remove the effect of node v1 (which can be achieved by using
Influence and Fisher), but also require to be capable of updating the effect of node {v2, v3, v4} on
model parameters (which is not supported by most unlearning methods). 3 Lack of data removal
guarantee. Although approximate unlearning methods are more efficient than retraining from scratch,
the removal of all information related to the deleted data is not guaranteed, in which we validate this
by “deleted data replay test” in Section 5. Intuitively, the above observation makes sense because
the output of approximate unlearning is not necessarily equivalent to the result of exact unlearning.
Furthermore, most approximate unlearning algorithms seek to prove the approximately unlearned
model is close to an exactly retrained model [Wu et al.(2020a)Wu, Dobriban, and Davidson, Aldaghri
et al.(2021)Aldaghri, Mahdavifar, and Beirami, Izzo et al.(2021)Izzo, Smart, Chaudhuri, and Zou].
However, it has been pointed out by [Thudi et al.(2021)Thudi, Jia, Shumailov, and Papernot, Guo
et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten] that we cannot infer “whether the data have
been deleted” solely from “the closeness of the approximately unlearned and exactly retrained model in
the parameter space”. In fact, [Thudi et al.(2021)Thudi, Jia, Shumailov, and Papernot] shows that one
can even unlearn the data without modifying the parameters. Therefore, it is important to show from
the algorithm itself that the sensitive information can be perfectly removed, which is lacking in most
approximate unlearning methods due to the approximation process. To overcome the above challenges,
we propose GraphEditor that enjoys a low computation cost with data removal guarantees.

4 GraphEditor

In this section, we first introduce the graph representation learning and unlearning under the nota-
tion of linear-GNN in Section 4.1 and Section 4.2, respectively. Then, we introduce the subgraph
sampling-strategy to lower the computation cost in Section 4.3 and introduce application of using
GraphEditor with multi-layer GNNs in Section 4.4. We consider both the node unlearning (discussed
in main text) and edge unlearning (deferred to appendix). We summarize the full unlearning process of
GraphEditor in Algorithm 1, which consists of three main functions: find W(), remove data(), and
add data().

5

4.1 Graph representation learning on linear-GNN

Instead of training ordinary GNNs by optimizing the cross-entropy loss, we propose to first formulate
the ordinary GNN training as a linear GNN training with Ridge regression as the objective, which
can be efficiently solved by the closed-form solution. More specifically, we first solve the following
Ridge regression problem LRidge(W;X,Y) = ∥XW − Y∥2F + λ∥W∥2F, where Y ∈ RN×dy is the
zero-one label matrix and X ∈ RN×dx is the node representation matrix for linear-GNN (e.g., for
SGC we have X = PLH(0)). The closed-form solution for the above objective function is W⋆ =
argminW LRidge(W;X,Y) = S⋆X

⊤Y, where S⋆ = (X⊤X+ λI)−1 is the inversed correlation matrix.
After training, we cache both S⋆ ∈ Rdx×dx and W⋆ ∈ Rdx×dy for efficient unlearning. Please refer to
find W() for details. To boost model performance, we can take the closed-form solution as initialization
and fine-tune using cross-entropy loss with a small number of iterations. The time complexity of
computing an exact unlearning solution with closed-form solution is O(Nd2x +Ndxdy + d2xdy), which
makes retraining on large-scale dataset computationally prohibitive due to linear dependency with
respect to the graph size N . In the next section, we show that GraphEditor achieves efficient graph
unlearning with computation cost independent of graph size, which makes it suitable for unlearning on
large graphs.

4.2 Graph representation unlearning on linear-GNN

Let us suppose node vi is to be deleted. In node unlearning, we not only need to unlearn node vi’s
features but also need to unlearn its connection with other nodes. Formally, let Gnode

u (Vnode
u , Enode

u)
denote the graph with node vi and all its associated edges are removed, where Vnode

u = V \ {vi} and
Enode
u = E \ {(vi, vj) | vj ∈ N (vi)}. The model after node unlearning is expected to produce the same

performance as the model trained on Gnode
u . The key idea of GraphEditor is to leverage the obtained

closed-form solution to first efficiently “remove” the effect of the deleted nodes on weight parameters
by remove data(), then “update” the effect of the neighboring nodes of the deleted nodes on weight
parameters by add data(). Before delving into the details of algorithm, let us first take a closer look
at the key factors that affect the weight parameters after node deletion.

Lemma 1 (Key factors that affect weight parameters). The optimal weight parameters Wu
⋆ after

removing node vi is affected by two factors: 1 “node representation removal” caused by removing node
set Vrm = {vi}; 2 “node representation update” due to the inner dependency between nodes in the
graph, where the affected node set are all nodes that has shortest path distance (SPD) smaller than 2L
to nodes in Vrm, i.e., Vupd = {vj | SPD(vi, vj) ≤ 2L, ∀vj ∈ V, ∀vi ∈ Vrm}.

The above lemma shows that node-set Vrm and Vupd are the key factors that affect the weight
parameters. Therefore, we propose GraphEditor to first remove the effect of all node in Vrm ∪ Vupd

on the optimal weight parameters W⋆, then update the effect of Vupd to derive the optimal weight
Wu

⋆ . More specifically, our first step is to remove the effect of Vrm ∪ Vupd by remove data(). Let
Xrm = X[Vrm ∪ Vupd],Yrm = Y[Vrm ∪ Vupd] denote the subset of matrix X,Y with row indexed by
Vrm ∪ Vupd. Then, given the initial solution S⋆ and W⋆, we first update the inversed correlation
matrix as Srm = S⋆ + S⋆X

⊤
rm[I −XrmS⋆X

⊤
rm]

−1XrmS⋆ and update the optimal solution by Wrm =
W⋆ − S⋆X

⊤
rm[I − XrmS⋆X

⊤
rm]

−1(Yrm − XrmW⋆). Then, our next step is to update the effect of
Vupd on the weight parameters by add data(). To achieve this, we first compute the updated node
representation X̃ on the graph without the deleted nodes. Let Xupd = X̃[Vupd],Yupd = Y[Vupd] denote
the subset of matrix X̃,Y with row indexed by Vupd. Then, we update the inversed correlation
matrix by Supd = Srm − SrmX

⊤
upd[I + XupdSrmX

⊤
upd]

−1XupdSrm and update the optimal solution
by Wupd = Wrm + SrmX

⊤
upd[I+XupdSrmX

⊤
upd]

−1(Yupd −XupdWrm). Notice that GraphEditor’s
output is equivalent to the optimal solution Wu

⋆ = argminWLRidge(W; X̃,Y). Besides, since we
are using the closed-form solution, we do not have to worry about the information of the deleted
nodes in Vrm might be potentially remained in the weight parameters. The time complexity for graph
unlearning is O(M3 +Md2x +Mdxdy), where M = |Vrm ∪ Vupd|. According to time complexity, we
know GraphEditor enjoys a lower computation cost than retraining from scratch if M < dx. When
M is large, we could split the removed nodes into multiple small shards and unlearn them one after
another, which alleviates the cubic computation dependency on M . Since we are using the closed-form
solution, the results after unlearning nodes are identical regardless of how many shards we split to
unlearn. Besides, since efficient matrix inverse algorithms (e.g., BLAS and LAPACK) have been

6

implemented in Numpy, the practical computation time of GraphEditor is significantly smaller than
re-training or other unlearning methods according to our observations. Details on the correctiveness of
GraphEditor and the time complexity please refer to Appendix C.

Remark 1 (Node/Edge addition). The process of node/edge addition is identical to node/edge deletion.
For example, we can add nodes by first unlearn the set of all “affected nodes” using the remove data(),
then perform information update on the “affected nodes” and the “added nodes” use the add data().
Here, the “affected nodes” are nodes that have SPD smaller than 2L to the “added nodes”, which is
similar to the node deletion operation. The same applies to edge addition.

4.3 Subgraph sampling for better scalability

Recall from Lemma 1 that the number of nodes in Vupd grows twice exponentially with respect to
the linear-GNN depth, i.e., by letting D as the maximum node degree we have |Vupd| ≤ |Vrm| ×D2L.
When the linear GNN is deep, GraphEditor becomes computational prohibitive even when the
deleted node set Vrm is small, since GraphEditor’s overall computation cost is cubic with respect
to |Vupd ∪ Vrm|. To overcome the aforementioned issue, we propose to decouple the receptive field of
each node with the GNN depth by extracting the rooted-subgraph for each node in the graph using
shaDow -subgraph sampler [Zeng et al.(2021)Zeng, Zhang, Xia, Srivastava, Malevich, Kannan, Prasanna,
Jin, and Chen], and apply the linear GNN to compute the feature representation of the root node on
the extracted subgraph. In practice, we can either use the K-hop sampling to uniformly sampling the
K-hop neighbors of root node or we can sample a fixed number of nodes according to the PPR score
with respect to the root node.

Lemma 2 (Affected nodes after sampling). Let us denote Vsg
j as the set of nodes returned by shaDow-

subgraph sampler for root node vj. If using shaDow-subgraph sampler, the affected node set of “node
representation update” in Lemma 1 are reduced to Vsg

upd = {vj | vi ∈ Vsg
j , ∀vj ∈ V, ∀vi ∈ Vrm}

As shown in Lemma 2, we can reduce the size of update node set to |Vsg
upd|, which is independent

of GNN depth. In practice, we find K-hop sampling works well on all datasets. When using K-hop
sampling, the update node set size is reduced to |Vsg

upd| ≤ |Vrm| ×DK and we only need to update the
representation of a node if its K-hop rooted subgraph contains the deleted nodes.

4.4 Using GraphEditor with non-linear multi-layer GNNs

One of the biggest concern readers might have is the linear-GNN requirement.1 Extending the existing
unlearning methods to non-linear models requires first pre-training multi-layer GNNs as a feature
extractor on the public datasets (assume nodes in the public set will never need to be unlearned in
the future), then we use the pre-trained multi-layer GNNs to extract the node representation for a
linear classifier2. During unlearning, we only unlearn the linear classifier without updating the feature
extractor because it does not carry any information on the deleted data. Formally, let us define
Vpublic,Vprivate as the nodes in the public and private dataset, Vrm ∩ Vpublic = ∅ and Vrm ⊂ Vprivate,
define fw ◦ gθ as a multi-layer GNN model with fw as the final linear classifier and gθ as all previous
layers. Let us suppose we could pre-train gθ on the public dataset nodes Vpublic, then we use the gθ as
a feature extractor to extract the node representation X on private graph node Vprivate. By doing so,
we can apply find W() on X to learn the linear classifier fw by GraphEditor. To unlearn node Vrm,
we can first apply remove data() with X[Vrm ∪ Vsg

upd] to unlearn the information of Vrm ∪ Vsg
upd on fw,

then compute the node representation X̃ on the update graph using gθ, and finally apply add data()
with X̃[Vsg

upd] to update the information of Vsg
upd on fw. Please notice that using GraphEditor with

non-linear GNNs is similar to using GraphEditor with linear-GNNs, except the original X, X̃ are
computed using linear-GNNs but here we use non-linear GNNs instead.

1Please notice that the linearity is not only required by GraphEditor but also required by most approximate
unlearning methods (e.g., [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten, Golatkar et al.(2020)Golatkar,
Achille, and Soatto, Wu et al.(2020a)Wu, Dobriban, and Davidson, Golatkar et al.(2021)Golatkar, Achille, Ravichandran,
Polito, and Soatto]) to theoretically show the data removal guarantee. Unless re-training from scratch, how to rigorously
show data removal guarantee in non-linear models is still an open problem and is non-trivial to verify empirically.

2Similar assumption are made in [Golatkar et al.(2021)Golatkar, Achille, Ravichandran, Polito, and Soatto] for
convolutional neural network unlearning.

7

5 Experiments

Datasets and baselines. We select OGB-Arxiv, OGB-Products, Flickr, and Reddit datasets for
node unlearning evaluation, and OGB-Collab dataset for edge unlearning evaluation. We compare with
approximate unlearning methods Influence and Fisher on linear-GNNs (by extending their application
from the non-structured data to the structured data) and exact unlearning method GraphEraser on
both linear and non-linear GNNs. Besides, we compare with retraining GCN [Kipf & Welling(2017)Kipf
and Welling], GraphSAGE [Hamilton et al.(2017)Hamilton, Ying, and Leskovec], GAT [Veličković
et al.(2017)Veličković, Cucurull, Casanova, Romero, Lio, and Bengio] from scratch.

Representation computation. For node unlearning, the node representation is extracted from the
sampled rooted subgraph of each node and label reuse trick [Wang et al.(2021b)Wang, Jin, Zhang, Yu,
Zhang, and Wipf] is used for linear-GNNs node classification. For edge unlearning, we first extract the
subgraph of the two nodes connected by that edge, then the edge representation is extracted from the
intersection of the two subgraphs, common neighbor score [Liben-Nowell & Kleinberg(2007)Liben-Nowell
and Kleinberg] is used for linear-GNNs.

Overview on experiments. We measure the success of an unlearning method by two criteria:
whether the information is unlearned and whether the unlearning algorithm could deteriorate the model
performance. Please notice that the second criteria is as important as the first criteria. For example, in
an extreme case, one can just unlearn by randomly initializing the model but it might significantly
hurt the model performance. To validate the above two criteria, we conduct the following experiments:
In section 5.1, we conduct deleted data replay test on linear-GNN to test whether an unlearning
method could perfectly unlearn the features-labels correlation from the deleted nodes, and whether
the unlearning method hurt the model’s prediction accuracy. In section 5.2, we compare the similarity
between the unlearned model to the re-training from the scratch model on linear-GNN. The two models
are expected to be similar to prevent information leakage on the deleted nodes. In section 5.3, we
evaluate the efficiency and effectiveness of using GraphEditor with non-linear GNNs. We compare
the accuracy with re-training non-linear GNNs from scratch. Intuitively, a strong unlearning method
should unlearn in a short time and produce a similar model performance to re-training. Furthermore,
we conduct edge unlearning test in Appendix A.1, ablation study the effect of subgraph sampling size
on GraphEditor for node unlearning in Appendix A.2 and for edge unlearning in Appendix A.3,
conduct node addition test in Appendix A.4, compare the prediction confidence on the unlearned node
in Appendix A.5, compare the running time in Appendix A.6, and compare linear-GNN with shallow
sampler and different multi-layer GNNs in Appendix A.7. Details on datasets, baselines, experiment
details are summarized in Appendix B.

5.1 Deleted data replay test

In this experiment, we randomly select 100 nodes from the training set as the deleted nodes and
modify their label categories to an extra-label category. An extra binary feature is injected to the
node features to help linear-GNNs memorize the correlation between deleted nodes to the extra-label
category. To simulate real-world deletion unlearning requests that come one after another, we first
uniformly split all deleted nodes into S ∈ {10, 50, 100} shards, then we randomly select one shard
without replacement to unlearn at each unlearning iteration and repeat this S times. We measure
the success of unlearning by checking whether the information on the deleted nodes is unlearned and
whether the unlearning algorithm could deteriorate the model performance: 1 To measure the first
criteria, we compare the number of the deleted nodes that is computed as the extra-label category.
The prediction of deleted nodes is computed on the graph structure before node deletion, therefore
namely “deleted data replay test”. Intuitively, a successful unlearning should never predict a node as
the extra-label category after the unlearning process. As shown in Table 1, exact unlearning methods
GraphEditor and GraphEraser can unlearn all the information because none the deleted nodes are
predicted as the extra-label category. However, this is not the case for approximate unlearning methods
Influence and Fisher. 2 To measure the second criteria, we report the “accuracy” before and after
unlearning. A strong unlearning method should not hurt the model performance, therefore they should

8

Table 1: Comparison on the accuracy (before parentheses), number of deleted nodes that are predicted
as the extra-label category before and after unlearning (inside parentheses), and wall-clock time.

OGB-Arxiv OGB-Products
Method S=10 S=50 S=100 S=10 S=50 S=100

GraphEditor
Before 71.77% (70) 71.77% (70) 71.77% (70) 77.63% (83) 77.63% (83) 77.63% (83)
After 71.78% (0) 71.78% (0) 71.78% (0) 77.63% (0) 77.63% (0) 77.63% (0)
Time 10.8 s 10.9 s 11.9 s 46.6 s 76.9 s 108.3 s

GraphEditor
+ Fine-tune

Before 73.87% (88) 73.87% (88) 73.87% (88) 79.26% (71) 79.26% (71) 79.26% (71)
After 73.86% (0) 73.86% (0) 73.86% (0) 79.26% (0) 79.25% (0) 79.25% (0)
Time 14.7 s 14.8 s 14.8 s 54.6 s 85.0 s 117.4 s

GraphEraser
Before 69.91% (28) 69.91% (28) 69.91% (28) 63.27% (32) 63.27% (32) 63.27% (32)
After 69.90% (0) 69.90% (0) 69.89% (0) 63.27% (0) 63.28% (0) 63.25% (0)
Time 615.9 s 1, 888.1 s 2, 237.8 s 15, 191.4 s 39, 612.5 s 46, 491.4 s

Influence
Before 72.99% (93) 72.99% (93) 72.99% (93) 78.05% (63) 78.05% (63) 78.05% (63)
After 72.89% (53) 72.89% (53) 72.89% (53) 78.05% (19) 78.03% (19) 78.04% (19)
Time 62.1 s 284.7 s 554.8 s 151.7 s 614.2 s 1, 185.7 s

Fisher
Before 72.94% (94) 72.94% (94) 72.94% (94) 78.05% (63) 78.05% (63) 78.05% (63)
After 72.73% (56) 72.70% (55) 72.69% (54) 77.87% (57) 77.86% (57) 77.76% (54)
Time 77.1 s 364.4 s 703.5 s 185.3 s 791.8 s 1, 528.6 s

produce high accuracy both before and after unlearning.3 From Table 1, we know that GraphEraser,
Influence, and Fisher need to sacrifice their performance to achieve efficient unlearning, therefore
they have a lower performance both before and after unlearning. GraphEraser has lower performance
because of data heterogeneity (data distribution on each shard is different from each other) and lack of
training data for each shard model (caused by graph partition). Influence and Fisher have lower
performance because a large regularization term is required to stabilize the Hessian inverse computation
and also due to random noises. 3 Moreover, we also compare the running time in Table 1. As the
number of shards S increases, the times required by GraphEditor increases less than baselines. This
is because increasing S could also decreases the number of nodes to unlearn at each iteration and the
time complexity of GraphEditor is independent of the dataset size (refer to in Section 4.2). Please
notice that this is not the case for baselines because their complexity is always proportional to the
dataset size (refer to part three of Section 3). Therefore, GraphEditor is more efficient than other
baseline methods.

5.2 Comparison to retrained model

To assess the similarity between the unlearned model and the retrained model, a natural way is to
measure the distance between the final activations obtained by the unlearned Wu and the retrained
Wr models on the deleted nodes and testing set nodes. More specifically, for B ∈ {Vrm,Vtest} we
compare the distance of final activations as Evi∈B

[
∥softmax(xiW

u)− softmax(xiW
r)∥2

]
. The deleted

nodes are randomly selected 100 samples from the training set and are unlearned through 10 sequential
forgetting requests, each request of size 10. Intuitively, a powerful unlearning algorithm should generate
similar final activations to the retrained model on nodes from both the deleted nodes and testing set
nodes. Besides, we measure the Euclidean distance between the parameters returned by the unlearning
algorithms and the parameters obtained via retraining from scratch. For linear GNN, a small Euclidean
distance in the parameter space means the model is likely to have the same predictions. We have the
following observations according to Figure 2: 1 We observe that GraphEditor’s (both with and
without fine-tune) final activation difference and parameter difference is consistently low compared to
baselines during the 10 unlearning requests. However, this is not the case for approximate unlearning
methods Influence and Fisher. 2 We observe that the final activation differences of approximate
unlearning methods on the deleted nodes are consistently larger than the values on the test nodes.
Therefore, a malicious third party could potentially identify the deleted nodes from other nodes by
comparing its final activation difference.

3We are not comparing the difference between the accuracy before and after unlearning because it is not necessarily
related to whether the unlearning success but mainly related to the number of data to unlearn.

9

Figure 2: Comparison on the difference of final activation prediction on deleted nodes (1st column) and
testing nodes (2nd column) and difference of weight parameters (3rd column).

5.3 GraphEditor with non-linear GNN

In this section, we demonstrate the potential extension of using GraphEditor with non-linear GNNs.
This experiment is conducted under the assumption that a subset of training samples are never forgotten
(i.e., public dataset), which can be used to pretrain a neural network as feature extractor, and only
unlearn the final linear classifier. To test under this scenario, we randomly split the training set into
90% and 10% for public dataset and private dataset. For GraphEditor, the feature extractor is
pre-trained on the 90% training set nodes, then it is used to extract node representation for all nodes.
The extracted representation will be used to train the linear classifier. GraphEditor is only applied
to the linear classifier since the pre-trained feature extractor do not have any information about the
deleted nodes. For both re-training and GraphEraser, the multi-layer GNNs are trained on all nodes.
We select 100 nodes from the 10% private training set with the largest node degree to unlearn. We
use 3-layer GAT, GCN, and SAGE with hidden dimension 256, attention head size 8 as the backbone
model. We are using the official implementation of GraphEraser (detailed setup in Appendix B.3).
From Table 2, we observe that: 1 GraphEditor could attain similar accuracy as re-training from
scratch but with shorter time, 2 GraphEditor has slightly lower precision than re-training because
it has less data to training the feature extractor, 3 the performance of GraphEraser is relatively
lower than GraphEditor and re-training due to lack of training data on each shard model, data
heterogeneity caused by graph partitioning, and is prone to over-fitting during shard model training
phase.

Table 2: Comparison on the accuracy after unlearning and running time on non-linear GNNs.
Retrain GraphEditor GraphEraser

OGB-Arxiv
SAGE 72.58± 0.17 (1, 211 sec) 71.13± 0.19 (19 sec) 56.32± 0.23 (224 sec)
GAT 72.23± 0.18 (1, 425 sec) 71.01± 0.19 (21 sec) 57.16± 0.56 (301 sec)
GCN 71.49± 0.27 (1, 089 sec) 70.89± 0.30 (18 sec) 55.90± 0.51 (277 sec)

OGB-Products
SAGE 80.67± 0.37 (3, 156 sec) 79.00± 0.39 (56 sec) 56.53± 0.50 (11, 648 sec)
GAT 81.42± 0.31 (3, 235 sec) 79.41± 0.37 (59 sec) 62.47± 0.62 (15, 496 sec)
GCN 79.14± 0.44 (3, 071 sec) 78.11± 0.48 (55 sec) 56.41± 0.49 (11, 298 sec)

Flickr
SAGE 53.95± 0.13 (311 sec) 52.87± 0.15 (11 sec) 43.15± 0.54 (194 sec)
GAT 53.64± 0.26 (328 sec) 52.42± 0.27 (13 sec) 43.14± 0.54 (243 sec)
GCN 52.86± 0.13 (305 sec) 52.50± 0.16 (12 sec) 44.01± 0.53 (190 sec)

Reddit
SAGE 97.03± 0.03 (3, 300 sec) 96.11± 0.03 (60 sec) 88.91± 0.03 (728 sec)
GAT 97.10± 0.04 (3, 598 sec) 96.21± 0.04 (61 sec) 87.78± 0.04 (993 sec)
GCN 96.24± 0.02 (3, 238 sec) 95.98± 0.03 (60 sec) 87.54± 0.03 (730 sec)

6 Conclusion

We study the problem of graph representation unlearning and propose an exact unlearning algorithm
GraphEditor, which supports node/edge deletion, node/edge addition, and node feature update.
GraphEditor requires neither retraining from scratch nor all data presented during unlearning, and
enjoys a guarantee on the removal of all the information associated with the deleted nodes/edges.
Extensive experiments on real-world datasets indicate its effectiveness and efficiency.

10

References

[Aldaghri et al.(2021)Aldaghri, Mahdavifar, and Beirami] Nasser Aldaghri, Hessam Mahdavifar, and
Ahmad Beirami. Coded machine unlearning. IEEE Access, 2021.

[Berg et al.(2017)Berg, Kipf, and Welling] Rianne van den Berg, Thomas N Kipf, and Max Welling.
Graph convolutional matrix completion. In International Conference on Knowledge Discovery &
Data Mining, 2017.

[Bishop et al.(1995)] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford
university press, 1995.

[Bourtoule et al.(2021)Bourtoule, Chandrasekaran, Choquette-Choo, Jia, Travers, Zhang, Lie, and Papernot]
Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
Symposium on Security and Privacy (SP), 2021.

[Brophy & Lowd(2021)Brophy and Lowd] Jonathan Brophy and Daniel Lowd. Machine unlearning for
random forests. In International Conference on Machine Learning, 2021.

[Cauwenberghs & Poggio(2001)Cauwenberghs and Poggio] Gert Cauwenberghs and Tomaso Poggio.
Incremental and decremental support vector machine learning. Advances in neural information
processing systems, 2001.

[Chen et al.(2021)Chen, Zhang, Wang, Backes, Humbert, and Zhang] Min Chen, Zhikun Zhang, Tian-
hao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. Graph unlearning. 2021.

[Chien et al.(2022)Chien, Pan, and Milenkovic] Eli Chien, Chao Pan, and Olgica Milenkovic. Certified
graph unlearning. arXiv preprint arXiv:2206.09140, 2022.

[Cong et al.(2021)Cong, Ramezani, and Mahdavi] Weilin Cong, Morteza Ramezani, and Mehrdad Mah-
davi. On provable benefits of depth in training graph convolutional networks. Advances in Neural
Information Processing Systems, 2021.

[Cui et al.(2019)Cui, Henrickson, Ke, and Wang] Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and
Yinhai Wang. Traffic graph convolutional recurrent neural network: A deep learning framework
for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation
Systems, 2019.

[Fu et al.(2022)Fu, He, and Tao] Shaopeng Fu, Fengxiang He, and Dacheng Tao. Knowledge removal
in sampling-based bayesian inference. arXiv preprint arXiv:2203.12964, 2022.

[Ginart et al.(2019)Ginart, Guan, Valiant, and Zou] Antonio Ginart, Melody Y Guan, Gregory Valiant,
and James Zou. Making ai forget you: Data deletion in machine learning. arXiv:1907.05012, 2019.

[Golatkar et al.(2020)Golatkar, Achille, and Soatto] Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[Golatkar et al.(2021)Golatkar, Achille, Ravichandran, Polito, and Soatto] Aditya Golatkar, Alessan-
dro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto. Mixed-privacy forgetting
in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021.

[Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten] Chuan Guo, Tom Goldstein, Awni
Hannun, and Laurens Van Der Maaten. Certified data removal from machine learning models. In
International Conference on Machine Learning, 2020.

[Hamilton et al.(2017)Hamilton, Ying, and Leskovec] William L. Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large graphs. In Advances in Neural Information
Processing Systems, 2017.

11

[Izzo et al.(2021)Izzo, Smart, Chaudhuri, and Zou] Zachary Izzo, Mary Anne Smart, Kamalika Chaud-
huri, and James Zou. Approximate data deletion from machine learning models. In International
Conference on Artificial Intelligence and Statistics, 2021.

[Khan & Swaroop(2021)Khan and Swaroop] Mohammad Emtiyaz Khan and Siddharth Swaroop.
Knowledge-adaptation priors. arXiv preprint arXiv:2106.08769, 2021.

[Kipf & Welling(2017)Kipf and Welling] Thomas N. Kipf and Max Welling. Semi-supervised classifica-
tion with graph convolutional networks. In International Conference on Learning Representations,
2017.

[Li et al.(2018)Li, Han, and Wu] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into
graph convolutional networks for semi-supervised learning. In Thirty-Second AAAI conference on
artificial intelligence, 2018.

[Liben-Nowell & Kleinberg(2007)Liben-Nowell and Kleinberg] David Liben-Nowell and Jon Kleinberg.
The link-prediction problem for social networks. Journal of the American society for information
science and technology, 58(7):1019–1031, 2007.

[Neel et al.(2020)Neel, Roth, and Sharifi-Malvajerdi] Seth Neel, Aaron Roth, and Saeed Sharifi-
Malvajerdi. Descent-to-delete: Gradient-based methods for machine unlearning. arXiv preprint
arXiv:2007.02923, 2020.

[Nguyen et al.(2022)Nguyen, Oikawa, Divakaran, Chan, and Low] Quoc Phong Nguyen, Ryutaro
Oikawa, Dinil Mon Divakaran, Mun Choon Chan, and Bryan Kian Hsiang Low. Markov chain
monte carlo-based machine unlearning: Unlearning what needs to be forgotten. arXiv preprint
arXiv:2202.13585, 2022.

[Petersen et al.(2008)Petersen, Pedersen, et al.] Kaare Brandt Petersen, Michael Syskind Pedersen,
et al. The matrix cookbook. Technical University of Denmark, 7(15):510, 2008.

[Rahimi et al.(2018)Rahimi, Cohn, and Baldwin] Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
Semi-supervised user geolocation via graph convolutional networks. In Proceedings of the Association
for Computational Linguistics, 2018.

[Ramezani et al.(2021)Ramezani, Cong, Mahdavi, Kandemir, and Sivasubramaniam] Morteza
Ramezani, Weilin Cong, Mehrdad Mahdavi, Mahmut T Kandemir, and Anand Sivasub-
ramaniam. Learn locally, correct globally: A distributed algorithm for training graph neural
networks. arXiv preprint arXiv:2111.08202, 2021.

[Sekhari et al.(2021)Sekhari, Acharya, Kamath, and Suresh] Ayush Sekhari, Jayadev Acharya, Gau-
tam Kamath, and Ananda Theertha Suresh. Remember what you want to forget: Algorithms for
machine unlearning. 2021.

[Sherman & Morrison(1950)Sherman and Morrison] Jack Sherman and Winifred J Morrison. Adjust-
ment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals
of Mathematical Statistics, 1950.

[Thudi et al.(2021)Thudi, Jia, Shumailov, and Papernot] Anvith Thudi, Hengrui Jia, Ilia Shumailov,
and Nicolas Papernot. On the necessity of auditable algorithmic definitions for machine unlearning.
arXiv preprint arXiv:2110.11891, 2021.

[Ullah et al.(2021)Ullah, Mai, Rao, Rossi, and Arora] Enayat Ullah, Tung Mai, Anup Rao, Ryan Rossi,
and Raman Arora. Machine unlearning via algorithmic stability. 2021.

[Veličković et al.(2017)Veličković, Cucurull, Casanova, Romero, Lio, and Bengio] Petar Veličković,
Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

[Wang et al.(2019a)Wang, Zhang, Zhang, Leskovec, Zhao, Li, and Wang] Hongwei Wang, Fuzheng
Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and Zhongyuan Wang. Knowledge-
aware graph neural networks with label smoothness regularization for recommender systems. In
International Conference on Knowledge Discovery & Data Mining, 2019a.

12

[Wang et al.(2021a)Wang, Guo, Xie, and Qi] Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Feder-
ated unlearning via class-discriminative pruning. arXiv preprint arXiv:2110.11794, 2021a.

[Wang et al.(2019b)Wang, He, Cao, Liu, and Chua] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu,
and Tat-Seng Chua. KGAT: knowledge graph attention network for recommendation. In Interna-
tional Conference on Knowledge Discovery & Data Mining, 2019b.

[Wang & Zhang(2022)Wang and Zhang] Xiyuan Wang and Muhan Zhang. How powerful are spectral
graph neural networks. arXiv preprint arXiv:2205.11172, 2022.

[Wang et al.(2021b)Wang, Jin, Zhang, Yu, Zhang, and Wipf] Yangkun Wang, Jiarui Jin, Weinan
Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of tricks for node classification with
graph neural networks. arXiv preprint arXiv:2103.13355, 2021b.

[Wei et al.(2022)Wei, Yin, Jia, Benson, and Li] Rongzhe Wei, Haoteng Yin, Junteng Jia, Austin R
Benson, and Pan Li. Understanding non-linearity in graph neural networks from the bayesian-
inference perspective. arXiv preprint arXiv:2207.11311, 2022.

[Wikipedia contributors(2021)] Wikipedia contributors. Right to be forgotten — Wikipedia, the free
encyclopedia, 2021.

[Wu et al.(2019)Wu, Souza, Zhang, Fifty, Yu, and Weinberger] Felix Wu, Amauri Souza, Tianyi
Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph convolutional
networks. In International conference on machine learning, 2019.

[Wu et al.(2022)Wu, Hashemi, and Srinivasa] Ga Wu, Masoud Hashemi, and Christopher Srinivasa.
Puma: Performance unchanged model augmentation for training data removal. arXiv preprint
arXiv:2203.00846, 2022.

[Wu et al.(2020a)Wu, Dobriban, and Davidson] Yinjun Wu, Edgar Dobriban, and Susan Davidson.
Deltagrad: Rapid retraining of machine learning models. In International Conference on Machine
Learning, 2020a.

[Wu et al.(2020b)Wu, Tannen, and Davidson] Yinjun Wu, Val Tannen, and Susan B Davidson. Priu:
A provenance-based approach for incrementally updating regression models. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, 2020b.

[Ying et al.(2018)Ying, He, Chen, Eksombatchai, Hamilton, and Leskovec] Rex Ying, Ruining He,
Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. Graph convo-
lutional neural networks for web-scale recommender systems. In International Conference on
Knowledge Discovery & Data Mining, 2018.

[Zeng et al.(2021)Zeng, Zhang, Xia, Srivastava, Malevich, Kannan, Prasanna, Jin, and Chen]
Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Raj-
gopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and
scope of graph neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=d0MtHWY0NZ.

13

https://openreview.net/forum?id=d0MtHWY0NZ

Contents

1 Introduction 1

2 Related works 3

3 Preliminaries on graph representation unlearning 4

4 GraphEditor 5
4.1 Graph representation learning on linear-GNN . 6
4.2 Graph representation unlearning on linear-GNN . 6
4.3 Subgraph sampling for better scalability . 7
4.4 Using GraphEditor with non-linear multi-layer GNNs 7

5 Experiments 8
5.1 Deleted data replay test . 8
5.2 Comparison to retrained model . 9
5.3 GraphEditor with non-linear GNN . 10

6 Conclusion 10

A More experiment results 15
A.1 Edge unlearning . 15
A.2 Effectiveness of GraphEditor for node unlearning . 16
A.3 Effectiveness for edge unlearning. 18
A.4 Node addition test . 19
A.5 Comparison on the confidence of delete nodes . 20
A.6 Computation cost of each phase. 20
A.7 Comparison linear-GNN with shallow sampler with deep multi-layer GNNs 21

B Experiment setup 21
B.1 Hardware specification and environment . 21
B.2 Dataset . 21
B.3 Details on baseline methods . 21
B.4 Baseline hyper-parameters setup . 22
B.5 Details for node deletion replay test . 23

C GraphEditor: details, correctiveness, and time complexity 23
C.1 Before unlearning: closed-form solution by find W(X, Y) 23
C.2 Graph unlearning: delete information by remove data(X, Y, S, W) 24
C.3 Graph unlearning: update information by add data(X, Y, S, W) 25
C.4 Connection to second-order unlearning . 25

D On the affected nodes size with/without subgraph sampling 26
D.1 Proof of Lemma 1 . 26
D.2 Proof of Lemma 2 . 26

E Dependency issue of applying existing unlearning approaches 27

F Linear-GNN is almost as powerful as non-linear counterparts 29
F.1 From Bayesian inference perspective . 29
F.2 From spectral neural network perspective . 30

14

Organization. In Section A, we provide additional experiment results on both node/edge unlearning
and comparison of linear GNNs to ordinary multi-layer non-linear GNNs. More specifically, we
conduct edge unlearning test in Appendix A.1, ablation study the effect of subgraph sampling size
on GraphEditor for node unlearning in Appendix A.2 and for edge unlearning in Appendix A.3,
conduct node addition test in Appendix A.4, compare the prediction confidence on the unlearned
node in Appendix A.5, compare the running time in Appendix A.6, and compare linear-GNN with
shallow sampler and different multi-layer GNNs in Appendix A.7. In Section B, we provide details
on experiment setup. In Section C, we provide detailed analysis on the computation complexity and
correctness of GraphEditor. In Section D, we provided proof for Lemma 1 and Lemma 2. In Section E
we highlight the dependency issue of applying existing unlearning approach to graph structured data.
In Section F, we summarize recent theoretical analysis showing that linear-GNN could be almost
as expressive as non-linear GNNs. [Code] to reproduce the experiment results can be find from the
anonymous repository.

A More experiment results

A.1 Edge unlearning

In this section, we introduce our edge unlearning problem formulation and demonstrate our results.
Suppose edge (vi, vj) is to be deleted, our goal is to unlearn the connectivity. Let Gedge

u (V, Eedge
u)

denotes the graph with edge (vi, vj) removed, where Eedge
u = E \ {(vi, vj)}. The model after unlearning

is expected to produce the same performance as the model trained on Gedge
u . As shown in Table 3, we

compare the model performance (measured by Hits@50 for edge unlearning), wall-clock time (measured
by seconds), and the number of deleted nodes that are predicted as the extra-label category before and
after unlearning (reported in the parenthesis), and have the following observations: 1 We can observe
that different from node-level tasks, the performance of GraphEditor to baselines are very close. This
is potentially due to the nature of OGB-Collab dataset and the feature extraction strategy we used on
linear GNN. In fact, we found that the feature extracting strategy plays a more important role in the
OGB-Collab dataset, please refer to the next section for more detailed discussions and ablation study
results in Table 5. 2 Besides, we can observe that the exact unlearning methods GraphEditor and
GraphEraser can always unlearn all the information related to the deleted nodes, however, this
is not the case for approximate unlearning methods Influence and Fisher. 3 GraphEditor is
significantly more efficient than other baseline methods, mainly due to its unlearning complexity is
independent of the dataset size, which requires less wall-clock time throughout the unlearning process.

Table 3: Comparison on the accuracy (in front of the parentheses), the number of the deleted nodes
that are predicted as the extra-label category before and after unlearning (inside the parentheses), and
wall-clock time.

Method S=10 S=50 S=100

O
G
B
-C

o
ll
a
b

(H
it
s@

5
0
)

GraphEditor
Before 63.45% (97) 63.45% (97) 63.45% (97)
After 62.69% (0) 57.42% (0) 56.34% (0)
Time 6.9 s 13.0 s 19.4 s

GraphEditor
+ Fine-tune

Before 64.00% (59) 64.00% (59) 64.00% (59)
After 63.76% (0) 63.67% (0) 63.39% (0)
Time 8.1 s 14.2 s 20.5 s

GraphEraser
Before 63.82% (21) 63.82% (21) 63.82% (21)
After 63.82% (0) 63.82% (0) 63.82% (0)
Time 8, 990.7 s 21, 586.8 s 29, 871.4 s

Influence
Before 63.76% (76) 63.76% (76) 63.76% (76)
After 63.57% (55) 63.19% (42) 63.54% (61)
Time 20.8 s 83.1 s 159.2 s

Fisher
Before 64.33% (31) 64.33% (31) 64.33% (31)
After 63.93% (1) 63.95% (1) 63.91% (1)
Time 27.4 s 114.8 s 230.8 s

15

https://anonymous.4open.science/r/GraphEditor/README.md

A.2 Effectiveness of GraphEditor for node unlearning

We study the effectiveness of GraphEditor by comparing it with ordinary GNNs (including GCN
and GraphSAGE) and provide an ablation study on the effect of the number of layers per-hop on
performance and efficiency. Besides, we also provide experimental results by applying GraphEraser4

onto ordinary GNNs by splitting the original graph into 8 subgraphs and using mean-aggregation during
inference, where the time is reported by the maximum time trained on a single subgraph. We repeat
experiment 5 times, each time 100 nodes are randomly selected as deleted nodes from the training set,
for node unlearning we randomly split the deleted nodes into 10 sequential forgetting requests of equal
size. The results are reported in Table 4, where we denote full-neighbor subgraph as “Full”, denote
subgraph with K neighbors per hop as “SG (K)”, and denote model with fine-tuning as “+ FT”. We
have the following observation from Table 4: 1 adding neighbors per hop not necessarily results in
a better model performance on the linear GNN used in GraphEditor, which can be explained by
the over-smoothing hypothesis in [Cong et al.(2021)Cong, Ramezani, and Mahdavi, Li et al.(2018)Li,
Han, and Wu]. 2 fine-tuning can bring around 3% of performance-boosting on node classification
datasets, which indicates the importance of finetuning. 3 linear GNN can achieve compatible results
(even outperform) the ordinary multi-layer non-linear GNN with significantly less computation time,
which motivates us to explore better feature engineering tricks for linear GNN as a future direction.
4 GraphEraser suffers performance degradation issue due to the data heterogeneity and lack of
training data on each subgraph, which is aligned with our observation on using GraphEraser with
linear GNNs as reported in Table 1. Interesting, we found that the performance degradation issue
using ordinary GNN is more severe than the linear GNN and the results reported in their original
paper [Chen et al.(2021)Chen, Zhang, Wang, Backes, Humbert, and Zhang]. This is potentially due to
ordinary non-linear GNNs requires more data for training than linear GNN because of its higher model
complexity.

4Here, we are using our implementation of GraphEraser by directly applying GCN, GraphSAGE, GraphSAINT, and
ClusterGCN onto the graph partitioned by METIS and using mean-average pooling for aggregation. We do this to make
sure only the unlearning method is different and other parts are consistent among different unlearning methods (e.g.,
neural architecture, hyper-parameters). We believe our implementation is general enough and has already captured the
leading spirit of GraphEraser, i.e., split data into multiple shards and train a different model on each graph partition.
METIS allows us to split the original graph into multiple subgraphs while preserving the original graph structure as
much as possible. We would like to point out that the experimental results using official implementations (Table 2) are
consistent with our implementation’s results and meet our expectations.

16

Table 4: Comparison on the effect of subgraph sampling and fine-tuning of GraphEditor on
linear-GNNs. Besides, we also compare with re-training multi-layer GNNs from scratch and using
GraphEraser for multi-layer GNNs (marked with †).

Method Accuracy (Before) Accuracy (After) Time

O
G
B
-A

rx
iv

Full 69.78± 0.02 69.78± 0.02 3968.4 s
Full + FT 74.04± 0.06 74.02± 0.02 3971.6 s
SG (10) 71.49± 0.02 71.42± 0.02 6.6 s
SG (20) 71.99± 0.02 71.98± 0.02 20.8 s
SG (50) 71.51± 0.03 71.52± 0.02 126.7 s
SG (10) + FT 73.75± 0.07 73.51± 0.07 10.4 s
SG (20) + FT 74.07± 0.07 74.04± 0.07 24.3 s
SG (50) + FT 74.29± 0.06 74.26± 0.06 130.0 s
†GCN 71.74± 0.29 71.67± 0.26 961.4 s
†GraphSAGE 71.49± 0.27 71.41± 0.30 686.6 s
†GCN + GraphEraser 66.52± 0.31 66.51± 0.32 137.8 s
†GraphSAGE + GraphEraser 65.96± 0.26 65.96± 0.31 107.6 s

O
G
B
-P

ro
d
u
c
ts

SG (10) 76.63± 0.02 76.63± 0.02 47.6 s
SG (15) 77.06± 0.03 77.06± 0.02 259.3 s
SG (20) 77.11± 0.02 77.12± 0.02 610.8 s
SG (10) + FT 79.26± 0.07 79.25± 0.07 54.2 s
SG (15) + FT 79.32± 0.06 79.32± 0.06 265.5 s
SG (20) + FT 79.51± 0.07 79.52± 0.07 617.1 s
†GraphSAGE 78.70± 0.36 78.68± 0.30 12539.5 s
†GraphSAINT 79.08± 0.24 79.07± 0.25 7061.1 s
†ClusterGCN 78.99± 0.36 79.00± 0.37 11459.8 s
†GraphSAGE + GraphEraser 58.99± 0.40 58.87± 0.41 3707.2 s
†GraphSAINT + GraphEraser 59.54± 0.41 59.39± 0.39 2271.3 s
†ClusterGCN + GraphEraser 59.10± 0.57 59.01± 0.60 3351.7 s

17

A.3 Effectiveness for edge unlearning.

We conduct similar experiment to Appendix A.2 for edge unlearning. We repeat experiment 5 times,
each time 100 edges are randomly selected as deleted edges from the training set, for edge unlearning
we unlearn through 100 forgetting requests The results are reported in Table 5, where we denote full-
neighbor subgraph as “Full”, denote subgraph with K neighbors per hop as “SG (K)”, and denote model
with fine-tuning as “+ FT”. We have the following observation from Table 5. 1 Addinhg neighbors per
hop not necessarily results in a better model performance on the linear GNN used in GraphEditor,
which can be explained by the over-smoothing hypothesis in [Cong et al.(2021)Cong, Ramezani, and
Mahdavi, Li et al.(2018)Li, Han, and Wu]. 2 Fine-tuning can bring very less improvements to link
prediction datasets, which is potential because node features are less important in the OGB-Collab
dataset, details please refer to here. 3 Linear GNN can achieve compatible results (even outperform)
the ordinary multi-layer non-linear GNN with significantly less computation time, which motivates us
to explore better feature engineering tricks for linear GNN as a future direction.

Table 5: Comparison on the effect of subgraph sampling and fine-tuning with ordinary GNNs for edge
unlearning.

Method Hit@50 (Before) Hit@50 (After) Time

O
G
B
-C

o
ll
a
b

Full 63.98± 0.02 63.36± 0.02 91.6 s
Full + FT 64.68± 0.06 64.68± 0.02 92.1 s
SG (50) 63.45± 0.02 63.30± 0.02 19.7 s
SG (100) 63.12± 0.03 63.22± 0.02 28.4 s
SG (200) 63.15± 0.02 63.25± 0.02 48.9 s
SG (50) + FT 63.63± 0.07 63.62± 0.07 20.3 s
SG (100) + FT 65.52± 0.06 64.45± 0.06 28.9 s
SG (200) + FT 64.60± 0.07 64.59± 0.07 49.4 s
GCN 47.14± 1.45 46.99± 1.56 499, 367.7 s
GraphSAGE 54.63± 1.12 54.49± 1.14 522, 571.2 s

18

https://github.com/snap-stanford/ogb/issues/84#issuecomment-862878051

A.4 Node addition test

In this experiment, we first randomly select 100 nodes from the training set as the node set Vadd to
add, then remove them from the graph, including all edges that are connected to Vadd. Similar to
the “deleted node reply test”, extra-label category and binary feature are added to all nodes, where
we edit the label of nodes in Vadd to this additional label category, and set the extra feature as “1”
for all node in Vadd, and set as “0” for all other nodes in V \ Vadd. Then, we pre-train our model on
the modified dataset. We randomly split the 100 added nodes into S ∈ {10, 50, 100} shards. At each
node addition iteration, we randomly select one shard without replacement and ask the model to learn
the information about the new nodes. To evaluate the effectiveness of node addition operation, we
compare the number of nodes that are predicted as the (C + 1)-th category. Notice that “node addition
test” can be thought of as a reverse operation of the “deleted data replay test” for node unlearning. As
shown in Table 6, GraphEditor can efficiently learn the correlation between the extra node features
and extra-label category.

Table 6: Comparison on the accuracy (in front of the parentheses), the number of the deleted nodes
that are predicted as the extra-label category before and after node addition (inside the parentheses),
and wall-clock time.

Method S=10 S=50 S=100

O
G
B
-A

rx
iv GraphEditor

Before 71.78% (0) 71.78% (0) 71.78% (0)
After 71.77% (70) 71.77% (70) 71.77% (70)
Time 11.7 s 11.9 s 12.1 s

GraphEditor
+ Fine-tune

Before 73.86% (0) 73.86% (0) 73.86% (0)
After 73.87% (88) 73.87% (88) 73.87% (88)
Time 15.1 s 15.3 s 15.4 s

O
G
B
-P

ro
d
u
c
ts

GraphEditor
Before 77.62% (0) 77.62% (0) 77.62% (0)
After 77.62% (83) 77.62% (86) 77.62% (86)
Time 48.3 s 79.1 s 110.4 s

GraphEditor
+ Fine-tune

Before 79.26% (0) 79.26% (0) 79.26% (0)
After 79.26% (71) 79.26% (71) 79.26% (71)
Time 56.4 s 87.1 s 119.8 s

19

A.5 Comparison on the confidence of delete nodes

In this experiment, we measure the difference between the prediction probability of the target category
obtained by the unlearned Wu and the retrained Wr models on the deleted nodes as

Evi∈Vrm

[
[softmax(xiW

u)]yi
− [softmax(xiW

r)]yi

]
.

The deleted nodes are randomly selected 100 samples from the training set and are unlearned through
10 sequential forgetting requests, each request of size 10. Intuitively, if a model learned the node during
training, it is expected to have a higher confidence on the target category. A powerful unlearning
algorithm should generate similar prediction probability of the target category to the retrained model
on nodes from both the deleted node-set. We repeat the experiment 5 times with different random seeds.
We retrain Influence and Fisher with the same initialization and number of epochs to eliminate the
performance difference caused by other factors. We observe that prediction probability of the target
category of GraphEditor (both with and without fine-tune) is consistently low compared to baselines
during the 10 unlearning requests. However, this is not the case for approximate unlearning methods
Influence and Fisher. Therefore, a malicious third party could potentially identify the deleted nodes
from other nodes by comparing its final activation difference.

Figure 3: Comparison on the difference of the prediction probability of the target category obtained by
the unlearned Wu and the retrained Wr models on deleted nodes

A.6 Computation cost of each phase.

We report the wall-clock time of unlearning 10 nodes with a single unlearning request on in Table 7 on
OGB-Arxiv and OGB-Products. We use 2-hop neighbor sampling with 15 neighbors for OGB-Arxiv and
10 neighbors for OGB-Products. In practice, the overall unlearning process of GraphEditor could
be split into the data preparation time on CPU and the computation time on GPU. For example on
OGB-Arxiv, GraphEditor takes around 190.2 + 0.325 seconds to learn a model using the closed-form
solution. The unlearning process takes around 1.21 + 0.092 + 0.0028 + 0.087 seconds, which is relatively
small compared to re-training. The computation time on OGB-Arxiv is larger than OGB-Products
because the dimension of the augmented feature in OGB-Arxiv is larger and the computation cost is
proportional to the feature dimension. Besides, we would like to point out that one of another biggest
advantages of GraphEditor is that it does not require all data presented during unlearning, which is
beneficial for the settings where not all the training data are available to retrain.

Table 7: The time of unlearning 10 nodes with single unlearning request using linear-GNN.
Compute X find W() Prepare delete remove data() Prepare update add data()
On CPU On GPU On CPU On GPU On CPU On GPU

OGB-Arxiv 190.2s 0.325s 1.21s 0.092s 0.0028 0.087s
OGB-Products 417.6s 0.028 7.03s 0.003s 0.0003 0.002s

20

A.7 Comparison linear-GNN with shallow sampler with deep multi-layer
GNNs

Reader might wondering whether shallow sampling could cause performance degradation. Before
answering this question, we would like to point out that it has been shown in existing works [Zeng
et al.(2021)Zeng, Zhang, Xia, Srivastava, Malevich, Kannan, Prasanna, Jin, and Chen] that a 2-hop
shallow sampler usually achieves good performance when compared to the deeper GNN with larger
receptive fields. Then, to answer this question, we compare the performance of the “2-hop sampler
with linear-GNN” and “multi-layer GNNs” on more datasets in Table 8. We could observe that the
performance of “2-hop linear GNN” is very close to “multi-layer GNNs”. Combining the results of the
2-hop linear GNN in Table 4 and Table 5, we believe using shallow depth is not a significant limitation.
Meanwhile, please notice that the computation cost in GraphEditor is only related to the number
of nodes in the sampled subgraph. Therefore, we could still use other sampling strategies to obtain a
deeper receptive field subgraph but with fewer neighbors per node. However, please notice that this is
not the focus of our unlearning paper.

Table 8: Comparison linear-GNN with shallow sampler with deep multi-layer GNNs.

Models Number of layers Flickr Reddit

GCN
3-layers 51.59± 0.17 95.32± 0.03
5-layers 52.17± 0.16 94.95± 0.12

GAT
3-layers 50.70± 0.32 out of memory
5-layers 51.64± 0.33 out of memory

Linear-GNN 2-hop sampling 51.81± 0.08 95.64± 0.02

B Experiment setup

B.1 Hardware specification and environment

We conduct experiments on a single machine with Intel i9 CPU, Nvidia RTX 3090 GPU, and 64GB
RAM memory. The code is written in Python 3.7 and we use PyTorch 1.4 on CUDA 10.1 for model
training.

B.2 Dataset

We select OGB-Arxiv, OGB-Products, Flickr, and Reddit datasets for node unlearning evaluation, and
OGB-Collab dataset for edge unlearning evaluation. The detailed dataset statistics are summarized in
Table 9.

Table 9: Statistics of the datasets used in our experiments.
OGB-Arxiv OGB-Products Flickr Reddit OGB-Collab

Nodes 169, 343 2, 449, 029 89, 250 232, 965 235, 868
Edges 1, 166, 243 61, 859, 140 899, 756 11, 606, 919 1, 285, 465
Task (Metric) Node (Accuracy) Node (Accuracy) Node (Accuracy) Node (Accuracy) Edge (Hits@50)

B.3 Details on baseline methods

In this paper, we consider graph unlearning method GraphEraser5 [Chen et al.(2021)Chen, Zhang,
Wang, Backes, Humbert, and Zhang], general machine unlearning method Influence6 [Guo et al.(2020)Guo,
Goldstein, Hannun, and Van Der Maaten] and Fisher7 [Golatkar et al.(2020)Golatkar, Achille, and
Soatto] as baseline methods.

5https://github.com/MinChen00/Graph-Unlearning
6https://github.com/facebookresearch/certified-removal
7https://github.com/AdityaGolatkar/SelectiveForgetting

21

https://github.com/MinChen00/Graph-Unlearning
https://github.com/facebookresearch/certified-removal
https://github.com/AdityaGolatkar/SelectiveForgetting

Details on GraphEraser. GraphEraser is an exact unlearning method. GraphEraser proposes
to split the original graph into multiple shards (i.e., subgraphs) and train an independent model on
each data shard. During inference, GraphEraser averages the prediction of each shard model as
the final prediction. Upon receiving unlearning requests, GraphEraser only needs to re-train the
specific shard model where the deleted data belongs to. For GraphEraser, we use the default official
implementation for non-linear GNNs and we also provide our own implementation for linear-GNNs
to achieve a fair comparison with other linear-GNN methods. For the official implementation, we
follow their official implementation by using “balanced k-means graph partitioning” to split the original
graph into 10 shards, using “importance score aggregate” for model inference aggregation, and using
mini-batch size 512 for shard model training. Although the official implementation also provides
“balanced label propagation” for graph partitioning, this graph partitioning method does not work well
with large-scale graphs due to its high memory cost. For example, it takes 173GB for Arxiv dataset,
which is infeasible on our machine. For our implementation, we split all nodes into 8 shards using graph
partition algorithm METIS and use mean average for model aggregation. Each shard model is trained
with enough epochs and we return the epoch model with the highest validation score. We believe our
implementation is general enough and has already captured the main spirit of GraphEraser, i.e., split
data into multiple shards and train a shard model on each shard. METIS allows us to split the original
graph into multiple subgraphs while preserving the original graph structure as much as possible.

Details on Influence. Influence is approximate unlearning method. Influence proposes to
unlearn by removing the influence of the deleted data on the model parameters. Formally, let Dd ⊂ D
denote the deleted subset of training data, Dr = D \ Dd denote the remaining data, L(w) is the
objective function, and w is the model parameters before unlearning. Then, Influence unlearn by
wu = w + H−1

r gd, which is derived from the first-order Taylor approximation on gradient, where
wu is the parameters after unlearning, Hr = ∇2L(w,Dr) is the Hessian computed on the remaining
data, and gd = ∇L(w,Dd) is the gradient computed on the deleted data. To mitigate the potential
information leakage, Influence utilizes a perturbed objective function L(w) + b⊤w, where b is the
random noise. Influence requires the loss function as logistic regression, we use the one-vs-rest
strategy splits the multi-class classification into one binary classification problem per class and train
with logistic regression. Besides, Influence-based unlearning requires the i.i.d. data and cannot
handle graph structured data, we opt to remove both the deleted and affected nodes. A reader who is
interesting the mathematically details could refer to Section E.

Details on Fisher. Fisher is approximate unlearning method. Fisher performs Fisher forgetting
by taking a single step of Newton’s method on the remaining training data, then performing noise
injection to model parameters to mitigate the potential information leaking. The model parameters
after unlearning is given by wu = w −H−1

r gr +H
−1/4
r b, where Hr = ∇2L(w,Dr) is Hessian and

gr = ∇L(w,Dr) is gradient computed on the remaining data Dr, and b is the random noise.

B.4 Baseline hyper-parameters setup

Hyper-parameters for linear-GNNs. Without specifically mentioned, all results reported on
baselines are applied to the same linear GNN architecture and the same subgraph extracted in
GraphEditor for a fair comparison. We select learning rate from {0.01, 0.001} and regularization
constant λ from {0, 10−4, 10−5, 10−6}. Notice that the larger λ, the less number of nodes/edges will be
predicted as the extra-label category. Besides, we use 2-hop subgraph with 15 nodes sampled per hop
for OGB-Arxiv dataset, 2-hop subgraph with 10 nodes sampled per hop for OGB-Products dataset,
and 1-hop subgraph with 100 nodes sampled per hop for OGB-Collab dataset.

Hyper-parameters for non-linear GNNs. Without specifically mentioned, we did not explicitly
conduct hyper-parameter selection for non-linear GNNs. Instead, we directly follow the hyper-parameters
used in the existing official implementations. For example, the non-linear GNNs in Section 5.3 is
directly using the implementation and hyper-parameter choices from [Zeng et al.(2021)Zeng, Zhang,
Xia, Srivastava, Malevich, Kannan, Prasanna, Jin, and Chen]8. The non-linear GNNs used with

8https://github.com/facebookresearch/shaDow_GNN

22

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://github.com/facebookresearch/shaDow_GNN

GraphEraser are the implementation provided by their authors, and we use their default hyper-
parameters but only change the hidden dimension.

B.5 Details for node deletion replay test

For node unlearning we consider multi-label node classification as the downstream task. Let assume
each node vi is associated with a node feature vector xi ∈ Rd and label yi ∈ {1, . . . , C}. Before
training, we preprocess the features and label as x′

i ∈ Rd+1 and categorical label y′i ∈ {1, . . . , C + 1}.
In particular, we have

• For any node vi ∈ Vrm, we set x′
i = [xi | 1] and y′i = C + 1;

• For any node vi ̸∈ Vrm, we set x′
i = [xi | 0] and y′i = yi.

Similarly, for edge unlearning, we consider multi-label link prediction as the downstream task. Let
suppose edge eij = (vi, vj) has feature xij ∈ Rd and label yij ∈ {1, . . . , C}. Before training, we
preprocess the features and categorical label as x′

ij ∈ Rd+1 and y′ij ∈ {1, . . . , C + 1}:

• For any edge eij ∈ Erm, we set x′
ij = [xij | 1] and y′ij = C + 1;

• For any edge eij ̸∈ Erm, we set x′
ij = [xij | 0] and y′ij = yij .

C GraphEditor: details, correctiveness, and time complexity

In the following, we first introduce the closed-form solution before unlearning in Section C.1, then
show how to remove and add information that associated with the node features in Section C.2 and
Section C.3, which relies on the following lemma.

Lemma 3 (Sherman–Morrison–Woodbury formula [Sherman & Morrison(1950)Sherman and Morrison]).
Suppose X ∈ RN×N is an invertible square matrix and u,v ∈ RN are column vectors. Then X+ uv⊤

is invertible if and only if 1 + v⊤X−1u ̸= 0. In this case, we have

(
X+ uv⊤)−1

= X−1 − X−1uv⊤X−1

1 + v⊤X−1u
. (1)

The Sherman–Morrison–Woodbury formula could also be generalized to a rank k modification
to X [Petersen et al.(2008)Petersen, Pedersen, et al., Bishop et al.(1995)]. More specifically, for any
U,V ∈ RN×k we have

(X+UV⊤)−1 = X−1 −X−1U(I+V⊤X−1U)−1V⊤X−1.

C.1 Before unlearning: closed-form solution by find W(X, Y)

Let X ∈ RN×dx denote the input node feature matrix and label vector Y ∈ RN×dy . Then, the
closed-form solution is as follows

W⋆ = argmin
W

∥XW −Y∥2F + λ∥W∥2F = (X⊤X+ λIn)
−1X⊤Y. (2)

Lemma 4. The time complexity for computing Eq. 2 is O(Nd2x +Ndxdy + d2xdy), where dx, dy are the
number of dimension of X,Y, N = |V| is the number of nodes in the graph.

Proof of Lemma 4. The time complexity for computing A = X⊤X+λIn ∈ Rdx×dx is O(Nd2x), the time
complexity for computing B = X⊤Y ∈ Rdx×dy is O(Ndxdy), the time complexity for computing A−1

is O(d3x), and the time complexity for computing A−1B is O(d2xdy). Then, the total time complexity
of computing the closed-form solution is O(Nd2x +Ndxdy + d2xdy).

23

C.2 Graph unlearning: delete information by remove data(X, Y, S, W)

Given the initial solution S⋆ and W⋆, we first update the inversed correlation matrix as

Srm = S⋆ + S⋆X
⊤
rm[I−XrmS⋆X

⊤
rm]

−1XrmS⋆, (3)

and update the optimal solution by

Wrm = W⋆ − S⋆X
⊤
rm[I−XrmS⋆X

⊤
rm]

−1(Yrm −XrmW⋆). (4)

Let X\i,Y\i as X,Y but with the i-th row deleted. By Lemma. 3, we have

(X⊤
\iX\i + λIn)

−1

=
(
X⊤X+ λIn − xix

⊤
i

)−1

= (X⊤X+ λIn)
−1 +

(X⊤X+ λIn)
−1xix

⊤
i (X

⊤X+ λIn)
−1

1− x⊤
i (X

⊤X+ λIn)−1xi
.

(5)

Let denote S⋆ = (X⊤X + λIn)
−1 and Srm = (X⊤

\iX\i + λIn)
−1 for simplicity. Then, the above

equality can be written as

Srm = S⋆ +
S⋆xix

⊤
i S⋆

1− x⊤
i S⋆xi

. (6)

Therefore, the optimal solution on the data after deletion can be written as

Wrm = argmin
W

∥X\iW −Y\i∥2F + λ∥W∥2F

= (X⊤
\iX\i + λIn)

−1X⊤
\iY\i

=

[
S⋆ +

S⋆xix
⊤
i S⋆

1− x⊤
i S⋆xi

]
(X⊤Y − xiy

⊤
i)

= W⋆ − S⋆xiy
⊤
i +

S⋆xix
⊤
i

1− x⊤
i S⋆xi

W⋆ −
S⋆xix

⊤
i S⋆

1− x⊤
i S⋆xi

xiy
⊤
i

= W⋆ −
S⋆xi

1− x⊤
i S⋆xi

[(
1− x⊤

i S⋆xi

)
y⊤
i − x⊤

i W⋆ + x⊤
i S⋆xiy

⊤
i

]

= W⋆ −
S⋆xi

1− x⊤
i S⋆xi

(y⊤
i − x⊤

i W⋆).

(7)

The above formulation can be written as the matrix form as in Eq. 3 and Eq. 4, which allows
GraphEditor to parallel delete all samples in the node set Vrm ∪ Vupd.

Lemma 5. The time complexity of Eq 6 and Eq. 7 is O(d2x + dxdy), where dx, dy are the number of
dimension of X,Y.

Proof of Lemma 5. The time complexity of computing a = S⋆xi ∈ Rdx and b = S⊤
⋆ xi ∈ Rdx is O(d2x),

the time complexity of computing c = yi −W⊤
⋆ xi ∈ Rdy is O(dxdy), the time complexity of computing

ab⊤ is O(d2x), the time complexity of computing ac⊤ is O(dxdy) the time complexity of computing
x⊤
i S⋆xi ∈ R is O(d2x). Therefore, the overall computation cost is O(d2x + dxdy).

Lemma 6. The time complexity of Eq 3 and Eq. 4 is O(M3 +Md2x +Mdxdy), where dx, dy are the
number of dimension of X,Y, M = |Vrm ∪ Vupd|.

Proof of Lemma 6. Let suppose M = |Vrm ∪ Vupd|. The time complexity to compute A = S⋆X
⊤
rm ∈

Rdx×M is O(Md2x), the time complexity to compute B = I−XrmS⋆X
⊤
rm ∈ RM×M is O(Md2x), the time

complexity to compute B−1 ∈ RM×M is O(M3), the time complexity to compute C = XrmS⋆ ∈ RM×dx

is O(Md2x), the time complexity to compute D = Yrm − XrmW⋆ ∈ RM×dy is O(Mdxdy), the
time complexity to compute AB−1C is O(M2dx), and the time complexity to compute AB−1D is
O(M2dx +Mdxdy).

24

C.3 Graph unlearning: update information by add data(X, Y, S, W)

Let Xupd = X̃[Vupd],Yupd = Y[Vupd] denote the subset of matrix X̃,Y with row indexed by Vupd.
Then, we update the inversed correlation matrix by

Supd = Srm − SrmX
⊤
upd[I+XupdSrmX

⊤
upd]

−1XupdSrm, (8)

and update the optimal solution by

Wupd = Wrm + SrmX
⊤
upd[I+XupdSrmX

⊤
upd]

−1(Yupd −XupdWrm). (9)

Let X+,Y+ as appending new sample to the (n+ 1)-th row of X,Y, denoted as (xn+1,yn+1). By
Lemma 3, we have

(
X⊤X+ xn+1x

⊤
n+1

)−1

= (X⊤X+ λIn)
−1 −

(X⊤X+ λIn)
−1xn+1x

⊤
n+1(X

⊤X+ λIn)
−1

1 + x⊤
n+1(X

⊤X+ λIn)−1xn+1
.

(10)

Let denote Srm = (X⊤X+ λIn)
−1 and Supd = (X⊤

+X+ + λIn)
−1 for simplicity. Then, the above

equality can be written as

Supd = Srm −
Srmxn+1x

⊤
n+1Srm

1 + x⊤
n+1Srmxn+1

. (11)

Then, the optimal solution on the data after adding new data point can be written as

Wupd = (X⊤X+ λIn + xn+1x
⊤
n+1)

−1(X⊤Y + xn+1y
⊤
n+1)

=

[
Srm −

Srmxn+1x
⊤
n+1Srm

1 + x⊤
n+1Srmxn+1

]
(X⊤Y + xn+1y

⊤
n+1)

= Wrm + Srmxn+1y
⊤
n+1 −

Srmxn+1x
⊤
n+1

1 + x⊤
n+1Srmxn+1

Wrm −
Srmxn+1x

⊤
n+1Srm

1 + x⊤
n+1Srmxn+1

xn+1y
⊤
n+1

= Wrm − Srmxn+1

1 + x⊤
n+1Srmxn+1

[
−
(
1 + x⊤

n+1Srmxn+1

)
y⊤
n+1 + x⊤

n+1Wrm + x⊤
n+1Srmxn+1y

⊤
n+1

]

= Wrm +
Srmxn+1

1 + x⊤
n+1Srmxn+1

(y⊤
n+1 − x⊤

n+1Wrm).

(12)
The above formulation can be written as the matrix form as in Eq. 8 and Eq. 9, which allows

parallel updating all samples in Vupd. The time complexity of node information update is similar to
Lemma 5 and Lemma 6 by replacing M = |Vupd|.

C.4 Connection to second-order unlearning

In the following, we study the connection between GraphEditor to the second-order unlearning
method, e.g.,the Fisher-and the Influence-based approximate unlearning methods as introduced
in [Golatkar et al.(2020)Golatkar, Achille, and Soatto, Guo et al.(2020)Guo, Goldstein, Hannun, and
Van Der Maaten]. In particular, we show that GraphEditor is the same as applying one-step of
Newton’s method using all remaining data, which requires time complexity O(Rd2x +Ndxdy + d2xdy)
where R = |V \ Vrm| is the number of remaining nodes. To see this, let first recall the gradient
∇LRidge(W⋆; X̃,Y) and Hessian ∇2LRidge(W⋆; X̃) is computed as

∇LRidge(W⋆; X̃,Y) = (X̃⊤X̃+ λI)W⋆ − X̃⊤Y,

∇2LRidge(W; X̃) = X̃⊤X̃+ λI
(13)

Then, one step of the Newton’s method on the updated data (X̃,Y) is computed as

Wu
⋆ = W⋆ −

[
∇2LRidge(W; X̃)

]−1∇LRidge(W; X̃,Y)

= W⋆ −
[
X̃⊤X̃+ λI

]−1(
(X̃⊤X̃+ λI)W⋆ − X̃⊤Y

)

= (X̃⊤X̃+ λI)−1X̃⊤Y

= argminW LRidge(W; X̃,Y),

(14)

25

which is equivalent to the solution of GraphEditor (Eq. 9). Notice that this property does not
hold in Fisher-based unlearning [Golatkar et al.(2020)Golatkar, Achille, and Soatto] because they
directly optimize the logistic regression. Similarly, this property does not hold in Influence-based
unlearning [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten] because their gradient is
computed on the deleted nodes.

D On the affected nodes size with/without subgraph sampling

In this section, we aim at investigating the size of affected nodes with and without using subgraph
sampling. Let N (vi) denote the set of 1-hop neighbors of node vj , L as the depth of underlying linear
GNN model with node representations computed by

X = PLH(0), P = D−1/2AD−1/2, (15)

and K as the depth of the sampled subgraph.
In the following, we first show in Section D.1 that without sampling, only nodes that are within

the 2L-hop neighborhood of a deleted node (i.e., has shortest path distance not greater than 2L) are
affected. Then we consider training with sampling, and show in Section D.2 that only nodes that are
within the sampled graph of a deleted node are affected.

D.1 Proof of Lemma 1

Let us first consider the case when L = 1, i.e., we have X = PH(0). Let suppose we want to delete
node vk. Since the propagation matrix is computed by

[P]i,j =
1√

deg(vi) deg(vj)
, (16)

all elements in the k-th row and the k-th column will be affected after deleting node vk.

All 1-hop neighbors are affected. Suppose vl is the 1-hop neighbor if vk. Before deleting node vk,
the representation of node vl is

xl =
1√

deg(vl)deg(vk)
h
(0)
k +

∑

vj∈N (vl)\{vk}

1√
deg(vl) deg(vj)

h
(0)
j (17)

Since deleting node vk can be think of setting its node degree deg(vk) as 0, the representation of all
1-hop neighbors are affected.

All 2-hop neighbors are affected. Suppose vl is the 1-hop neighbor of vk, vm is the 2-hop neighbor
of vk, and vl is the 1-hop neighbor of vm. Before deleting node vk, the representation of node vm is

xm =
1√

deg(vm)deg(vl)
h
(0)
l +

∑

vj∈N (vm)\vl

1√
deg(vm) deg(vj)

h
(0)
j (18)

Since vl is the 1-hop neighbor of vk, deleting node vk will change deg(vl) by reducing the degree of
node vl. the representation of all 2-hop neighbors are also affected.

Neighbors that are more than 2-hops are not affected. Since deleting nodes only affect a single
row and column of the propagation matrix, any neighbors that are more than 2-hops are not affected.

Since an the representation of an L-layer linear GNN can be think of as X = P(PL−1H(0)) =
PH(L−1), one can easily generalize the above logic and find that all 2L-hop neighbors are affected.

D.2 Proof of Lemma 2

When using subgraph sampling, the representation of any node vi is only depending on a subgraph
Gsg
i (Vsg

i , E
sg
i) induced by the sampled nodes. When deleting node vk, the subgraph Gsg

i get affected
only if node vk ∈ Vsg

i .

26

E Dependency issue of applying existing unlearning approaches

Most unlearning approaches [Wu et al.(2020a)Wu, Dobriban, and Davidson, Guo et al.(2020)Guo,
Goldstein, Hannun, and Van Der Maaten, Izzo et al.(2021)Izzo, Smart, Chaudhuri, and Zou] are designed
for the finite-sum problem with i.i.d. assumption on all the training data. Directly generalizing the
aforementioned general machine unlearning methods to graph structured data is infeasible due to the
non-i.i.d. data issue caused node dependency. In other word, one cannot directly unlearn a specific
node vi, but have to remove the effect of all its multi-hop neighbors in parallel if using these methods.

In the following, we use [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten] as an
example to illustrate the key issue. The discussion also applied to other machine unlearning methods
that assume input data is i.i.d.. In the following, we first recall how the influence function is used to
update the weight parameters in [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten], then
highlight why node dependency makes applying [Guo et al.(2020)Guo, Goldstein, Hannun, and Van
Der Maaten] to graph-structured data challenging and introduce a solution to alleviate this issue.

Influence function in [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten].
The influence function used in [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten] captures
the change in model parameters due to removing a data point from the training set. Let L(w) denote
the finite-sum objective function computed on the full training set {xi}ni=1 with optimal solution

w⋆ = argmin
w

L(w),where L(w) =

n∑

i=1

ℓ(w⊤xi, yi) (19)

and L\n(w) denote the objective function without data point (xn, yn) with optimal solution

w\n = argmin
w

L\n
(w),where L\n

(w) =

n−1∑

i=1

ℓ(w⊤xi, yi) = L(w)− ℓ(w⊤xn, yn). (20)

From w\n = argminw L\n
(w) and the convexity of the objective function L\n

, we know that
∇L\n(w\n) = 0. Therefore, we have

0 = ∇L(w\n)−∇ℓ(w⊤
\nxn, yn)

≈
(a)

[
∇L(w⋆) +∇2L(w⋆)(w\n −w⋆)

]
−
[
∇ℓ(w⊤

⋆ xn, yn) +∇2ℓ(w⊤
⋆ xn, yn)(w\n −w⋆)

]

=
[
∇L(w⋆)−∇ℓ(w⊤

⋆ xn, yn)
]
+
[
∇2L(w⋆)−∇2ℓ(w⊤

⋆ xn, yn)
]
(w\n −w⋆)

=
(b)

[
−∇ℓ(w⊤

⋆ xn, yn)
]
+
[
∇2L(w⋆)−∇2ℓ(w⊤

⋆ xn, yn)
]
(w\n −w⋆),

(21)

where (a) is the first-order Taylor expansion and (b) due to ∇L(w⋆) = 0 for w⋆ = argminw L(w).
Re-arranging the above equation we have

w\n ≈ w⋆ +
[
∇2L(w⋆)−∇2ℓ(w⊤

⋆ xn, yn)
]
∇ℓ(w⊤

⋆ xn, yn)︸ ︷︷ ︸
influence function

,
(22)

where the second term on the right hand side is the so called influence function.

Challenges due to dependency in graph. Please notice that the objective function in Eq. 19 and
Eq. 20 are finite-sum formulation. In the following, we will show that directly using the second-order
method in [Guo et al.(2020)Guo, Goldstein, Hannun, and Van Der Maaten] is not allowed due to the
node dependency in graph. Before getting started, let me first introduce some notations:

• Let us denote the graph before node deletion as G, where the graph structure is captured by
adjacency matrix A ∈ {0, 1}n×n and node feature matrix is X. The row normalized propagation
matrix us computed as P = D−1A.

• Let us denote the graph after node deletion as G\n, where the graph structure is captured by

adjacency matrix A\n ∈ {0, 1}(n−1)×(n−1) and node feature matrix is X\n ∈ R(n−1)×d. The row

normalized propagation matrix us computed as P\n = D−1
\nA\n.

27

For simplicity, let us only consider 1-hop SGC, which is already enough to illustrate why node
dependency makes applying machine unlearning methods to graph structured data challenging. In
graph structured data, let F (w) denote the objective function computed on the full training graph G
with optimal solution

w⋆ = argmin
w

L(w),where L(w) =

n∑

i=1

ℓ(w⊤[PX]i, yi) (23)

and L\n(w) denote the objective function computed on graph G\n without node n , with optimal
solution

w\n = argmin
w

L\n
(w),where L\n

(w) =

n−1∑

i=1

ℓ(w⊤[P\nX]i, yi)

̸=
(a)

L(w)− ℓ(w⊤[PX]n, yn).

(24)

Due to the inequality of (a), we cannot directly use the second-order method in [Guo et al.(2020)Guo,
Goldstein, Hannun, and Van Der Maaten] to approximate w\n from w⋆. Please notice that this equality
is important in Eq. 21 before using first-order Taylor expansion.

Get around this issue by deleting more nodes. One way to alleviate this issue is to unlearn
all the affected nodes Vaffect = {vn} ∪ N (vn) in parallel. To see this, according to the definition of
Vaffect, we know [PX]i = [P\nX\n]i, ∀vi ∈ V \ Vaffect because all the final-layer output of any node in
V \ Vaffect are remaining the same after node deletion. Then, we can define the new objective function
L\Vaffect

(w) on node set V \ Vaffect

L\Vaffect
(w) =

∑

i∈V\Vaffect

ℓ(w⊤[P\nX\n]i, yi)

=
∑

i∈V\Vaffect

ℓ(w⊤[PX]i, yi)

=
(a)

L(w)−
∑

i∈Vaffect

ℓ(w⊤[PX]i, yi),

(25)

where the equality in (a) is what we are looking for and is similar to the last term in Eq. 20. To this
end, let us define w\Vaffect

= argminw L\Vaffect
(w), then we have

0 = ∇L(w\Vaffect
)−

∑

i∈Vaffect

∇ℓ(w⊤
\Vaffect

[PX]i, yi)

≈

[
∇L(w⋆)−

∑

i∈Vaffect

∇ℓ(w⊤
⋆ [PX]i, yi)

]

+

[
∇2L(w⋆)−

∑

i∈Vaffect

∇2ℓ(w⊤
⋆ [PX]i, yi)

]
(w\Vaffect

−w⋆)

=
(a)

[
−

∑

i∈Vaffect

∇ℓ(w⊤
⋆ [PX]i, yi)

]
+

[
∇2L(w⋆)−

∑

i∈Vaffect

∇2ℓ(w⊤
⋆ [PX]i, yi)

]
(w\Vaffect

−w⋆).

(26)

As a result, we can approximate w\Vaffect
by

w\Vaffect
= w⋆ +

[
∇2L(w⋆)−

∑

i∈Vaffect

∇2ℓ(w⊤
⋆ [PX]i, yi)

]−1 [∑

i∈Vaffect

∇ℓ(w⊤
⋆ [PX]i, yi)

]
, (27)

where both Hessian and gradient are computed on the original graph before node deletion.

28

F Linear-GNN is almost as powerful as non-linear counterparts

In this section, we summarize recent studies [Wei et al.(2022)Wei, Yin, Jia, Benson, and Li, Wang
& Zhang(2022)Wang and Zhang] shows that linear-GNNs are almost as expressive as its non-linear
counterparts. Although two papers study from different perspective (i.e., [Wei et al.(2022)Wei, Yin,
Jia, Benson, and Li] studies from Bayesian inference and [Wang & Zhang(2022)Wang and Zhang]
studies from spectral neural network), they all lead to a similar conclusion that linear-GNNs are almost
as expressive as its non-linear counterparts under some assumption on the node features and graph
structure properties.

F.1 From Bayesian inference perspective

[Wei et al.(2022)Wei, Yin, Jia, Benson, and Li] compares linear-GNN and non-linear GNN from the
Bayesian inference perspective. They consider binary node classification where the graph is randomly
generated by contextual stochastic block models (CSBM). They measure the success of node classification
by signal-to-noise ratio (SNR). They show that under some assumptions on the CSBM, the SNR of
non-linear GNN is in the same order as linear-GNN.

More specifically, [Wei et al.(2022)Wei, Yin, Jia, Benson, and Li] assumes the random graphs
are generated by contextual stochastic block models (CSBM), where each node has a feature vector
xi ∈ Rm and a binary category label yi ∈ {+1,−1}. Let us suppose G(V, E) is an graph generated by
CSBM(n, p, q,P+1,P−1) with the following processes:

• (Generate node labels) For each node vi ∈ V, we randomly sample the label from yi ∈ {+1,−1},
where n = |V| is the number of nodes.

• (Generate graph structure) If any two nodes have the same label yi = yj , then with probability p
we add edge (vi, vj) to the edge set E . Otherwise, with probability q we add edge (vi, vj) to the
edge set E .

• (Generate node features) If a node yi = +1, then its feature vector xi is sampled from P+1 =
N (µ+1, I/m). Otherwise, if a node yi = −1, then its feature vector xi is sampled from P−1 =
N (µ−1, I/m).

After that, [Wei et al.(2022)Wei, Yin, Jia, Benson, and Li] formulates non-linear GNN and linear-
GNN under the context of Bayesian inference, where the optimal propagation is derived from max-a-
posterior estimation. To classify a node vi, the optimal non-linear propagation is defined as

Pi = ψ(xi) +
∑

j∈N (vi)

ϕ(ψ(xj); log(p/q)), (28)

where ψ(x) = log(P+1(x)/P−1(x)) and ϕ(ψ, log(p/q)) = ReLU(ψ + log(p/q))− ReLU(ψ − log(p/q))−
log(p/q). Similarly, for linear-GNN, the optimal linear propagation is defined as

P l
i(α) = ψ′(xi) + α

∑

j∈N (vi)

ψ′(xj), (29)

where ψ′(x) = m ×
(
⟨µ+1 − µ−1,x⟩ − (∥µ+1∥22 − ∥µ+1∥22)/2

)
and α is a parameter to balance infor-

mation from the root node and its neighbors.
The minimal Bayesian mis-classification error is measured by signal-to-noise ratio (SNR), which is

defined as ρ for non-linear GN and ρl for linear-GNN,

ρ =
(E[Pi|yi = +1]− E[Pi|yi = −1])2

variance(Pi|yi = +1)
, ρl = max

α

(E[P l
i(α)|yi = +1]− E[P l

i(α)|yi = −1])2

variance(P l
i(α)|yi = +1)

. (30)

They make the following assumptions on the random graph generator CSBM. More specifically, [Wei
et al.(2022)Wei, Yin, Jia, Benson, and Li] assumes the graph structure generated by p, q is neither too
strong (e.g., p→ 1 and q → 0) or too weak (e.g., graph is too sparse) in Assumption 1 assumes feature
generation distributions for positive nodes and negative nodes are not too different.

29

Assumption 1 (Assumption on graph structure). Let us define S(p, q) = (p − q)2/(p + q). They
assume no very weak graph structure information S(p, q) = ωn

(
(log n)2/n

)
and no very strong graph

structure information S(p, q) ̸→ |p− q|.

Assumption 2 (Assumption on node features). Recall that µ+1 is the mean of positive node feature
distribution and µ−1 is the mean of negative node feature distribution. Then, we assume

√
m∥µ+1 −

µ−1∥2 = On(1)

Then, [Wei et al.(2022)Wei, Yin, Jia, Benson, and Li] has the following conclusion on the SNR of
linear-GNN and non-liear GNN. In particular, they show that non-linear GNN behaves similar to the
linear-GNN as their SNRs are in the same order. In other word, under some assumption on graph
structure and node features, the linear-GNN could be as expressive as non-linear GNN.

Theorem 1 (Theorem 2 part 1 of [Wei et al.(2022)Wei, Yin, Jia, Benson, and Li]). If CSBM satisfy
Assumption 1 and Assumption 2, we have ρr = Θn(ρl).

When non-linearity is helpful? Besides, they show that non-linearity is helpful only if the
Assumption 2 does not hold. In other word, if the mean of the positive and negative node feature
sampling distribution is different enough

√
m∥µ+1 − µ−1∥2 = ωn(1), then ρr = ωn(ρl).

F.2 From spectral neural network perspective

[Wang & Zhang(2022)Wang and Zhang] shows that linear-GNNs could produce arbitrary predictions
under mild conditions on the Laplacian and node features, without relying on the non-linearity in MLP.
The expressive power of linear-GNNs mainly comes from its weighted combination of multi-hop graph
convolution operators.

Let us define L ∈ Rn×n as the Laplacian matrix in spectral GNNs, where U is the eigenvectors of L
and Λ is the diagonal matrix of eigenvalues. They make the following assumptions on L.

Assumption 3 (Assumption on L). No eigenvalues of L are identical.

Let us denote X ∈ Rn×d as the node features and X̃ = UX as the graph Fourier transform of node
features X. They make the following assumption on X̃.

Assumption 4 (Assumption on X̃). No rows of X̃ are zero vector.

Given any target function z = f(L,X) ∈ Rn×1 we want to approximate via linear-GNN. [Wang &
Zhang(2022)Wang and Zhang] shows that there exists a linear-GNN can approximate function f(L,X)
arbitrary close if Assumption 3 and Assumption 4 hold.

Theorem 2. Let us define gα,w(L,X) =
∑k

ℓ=1 αℓL
ℓXw as the linear-GNN and f is the target function

we want to approximate. Under the Assumption 3 and Assumption 4, there is always exists a set of
α⋆ ∈ Rk,w⋆ ∈ Rd such that gα⋆,w⋆(L,X) = f(L,X).

In practice, [Wang & Zhang(2022)Wang and Zhang] found Assumption 3 and Assumption 4 are
very likely to hold on the real-world datasets.

When non-linearity is helpful? They show that adding non-linear MLP to linear-GNNs could
alleviate the conditions on node features (i.e., Assumption 4) because the output of multi-layer neural
network are very likely to satisfy this condition. However, adding non-linearity will not necessarily
improve its expressive power if the conditions are already satisfied in the first place.

30

	Introduction
	Related works
	Preliminaries on graph representation unlearning
	GraphEditor
	Graph representation learning on linear-GNN
	Graph representation unlearning on linear-GNN
	Subgraph sampling for better scalability
	Using GraphEditor with non-linear multi-layer GNNs

	Experiments
	Deleted data replay test
	Comparison to retrained model
	GraphEditor with non-linear GNN

	Conclusion
	More experiment results
	Edge unlearning
	Effectiveness of GraphEditor for node unlearning
	Effectiveness for edge unlearning.
	Node addition test
	Comparison on the confidence of delete nodes
	Computation cost of each phase.
	Comparison linear-GNN with shallow sampler with deep multi-layer GNNs

	Experiment setup
	Hardware specification and environment
	Dataset
	Details on baseline methods
	Baseline hyper-parameters setup
	Details for node deletion replay test

	GraphEditor: details, correctiveness, and time complexity
	Before unlearning: closed-form solution by find_W(X, Y)
	Graph unlearning: delete information by remove_data(X, Y, S, W)
	Graph unlearning: update information by add_data(X, Y, S, W)
	Connection to second-order unlearning

	On the affected nodes size with/without subgraph sampling
	Proof of Lemma 1
	Proof of Lemma 2

	Dependency issue of applying existing unlearning approaches
	Linear-GNN is almost as powerful as non-linear counterparts
	From Bayesian inference perspective
	From spectral neural network perspective

