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Abstract

Transformers have achieved great success in several do-
mains, including Natural Language Processing and Com-
puter Vision. However, their application to real-world
graphs is less explored, mainly due to its high compu-
tation cost and its poor generalizability caused by the
lack of enough training data in the graph domain. To
fill in this gap, we propose a scalable Transformer-like
dynamic graph learning method named Dynamic Graph
Transformer (DyFormer) with spatial-temporal en-
coding to effectively learn graph topology and capture
implicit links. To achieve efficient and scalable train-
ing, we propose temporal-union graph structure and its
associated subgraph-based node sampling strategy. To
improve the generalization ability, we introduce two com-
plementary self-supervised pre-training tasks and show
that jointly optimizing the two pre-training tasks results
in a smaller Bayesian error rate via an information-
theoretic analysis. Extensive experiments on the real-
world datasets illustrate that DyFormer achieves a con-
sistent 1% ∼ 3% AUC gain (averaged over all time steps)
compared with baselines on all benchmarks. [Code]

1 Introduction

In recent years, graph representation learning has been
recognized as a fundamental learning problem and has
received much attention due to its widespread use in
various domains, including social network analysis [14],
traffic prediction [20], knowledge graphs [27], drug dis-
covery [6], and recommender systems [2]. Most exist-
ing graph representation learning works focus on static
graphs. However, real-world graphs are intrinsically dy-
namic where nodes and edges can appear and disappear
over time. For example, the Facebook social network can
be considered as a giant dynamic graph, where a new
node is created when a user registers the account, and an
edge between two nodes is created when a user connects
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to another one as a friend. The dynamic nature of real-
world graphs motivates graph learning methods that can
model temporal evolutionary patterns and predict node
properties or future links.

Although dynamic graph is important and has wide
application, solving real-world dynamic graph learning
problems is more challenging than traditional static
graph learning problem due to the following reasons:
(1) missing or spurious links in dynamic graph :
Real-world static graphs are potentially affected by
missing/spurious links, applying Graph Neural Networks
(GNNs) on real-world graphs could result in ineffective
message aggregation over unrelated neighbors from
missing/spurious connections. The issue is more severe
on dynamic graphs because GNNs cannot distinguish
whether it is missing/spurious links or is the temporal
evolutionary pattern of the dynamic graph, which
could potentially lead to poor generalization. Although
several attempts [23, 19, 10, 29] have been made to
generalize the static graph algorithm to dynamic graphs
by first learning node representations on each static
graph snapshot then aggregating these representations
from the temporal dimension, these methods still suffer
from the aforementioned missing/spurious links issue.
Furthermore, aggregating information on the temporal
dimension could further carry such error over time,
which can significantly affect downstream task accuracy;
(2) scalability issue at the temporal dimension :
Unlike a fixed-size static graph, the size of a dynamic
graph can increase over time. The complexity of
most static graph GNNs is dependent on graph sizes,
which makes these algorithms not scalable on large
graphs [33, 4]. Dynamic graphs introduce an additional
level of complexity dependency on the number of time
steps, which makes the computation issue more severe.
Motivated by the importance and wide applications of
dynamic graphs, we propose DyFormer to solve the
aforementioned challenges.

To overcome the missing or spurious links
issue , DyFormer leverages the Transformer [26] as
the backbone to model all pair-wise node relations
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using the fully-connected self-attention mechanism. By
doing so, DyFormer can model the relation between
node pairs that have no links existed in the original
graph, thus becoming robust to graphs with missing
and spurious links. Meanwhile, to fully take advantage
of the existing spatial and temporal information from
the given dynamic graphs, we generalize the positional
encoding to the graph domain using spatial-temporal
encoding (Section 3.3) by injecting both spatial and
temporal graph evolutionary information as inductive
biases into DyFormer, which can help our model
better utilize the existing graph structure and learn
a graph’s evolutionary patterns over time. Furthermore,
to alleviate the potential poor generalization ability
caused by missing/spurious links, we introduce two
complementary dynamic graph pre-training tasks that
help DyFormer present a better performance on the
downstream tasks (Section 4.1) and a provable benefit
on generalization ability using information theory. To
improve the scalability issue , we propose to make the
complexity independent on both the graph size and the
number of time-steps. To achieve this, we first introduce
the temporal-union graph structure that aggregates
graph information from multiple time-steps into a unified
meta-graph (Section 3.1). Then, we develop a two-
tower architecture (Section 3.4) with a novel subgraph-
based node sampling strategy (Section 3.2) to model a
subset of nodes with their contextual information. These
approaches improve DyFormer’s training efficiency and
scalability from temporal and spatial perspectives.

To this end, we summarize our contributions as
follows: (1) a two-tower Transformer-based method
named DyFormer with the spatial-temporal encoding
that can capture implicit edge connections in addition
to the input graph topology; (2) two complementary
pre-training tasks to improve generalization ability and
robustness to missing/spurious links, which are proven
beneficial using information theory; (3) a temporal-union
graph data structure that efficiently summarizes the
spatial-temporal information of dynamic graphs and a
novel sampling strategy that makes DyFormer have
complexity independent on graph size and the number
of time steps; and (4) a comprehensive evaluation on
real-world datasets with ablation studies to validate the
effectiveness of DyFormer.

2 Preliminaries and related works

We first define dynamic graphs, then review related
works on dynamic graph and graph Transformers.

Dynamic graph definition. The nodes and
edges in a dynamic graph may appear and disappear
over time. We consider a dynamic graph as a se-
quence of static graph snapshots with a temporal or-

der G := {G1, . . . ,GT }, where the t-th snapshot graph
Gt(V, Et) is an undirected graph with a shared node set
V of all time steps and an edge set Et. We also denote its
adjacency matrix as At. Our goal is to learn the node
representation at each time-step t, which can be used for
any specific downstream task such as link prediction or
node classification. Please notice that our setting is the
same as the dynamic graph learning setting in [23, 19],
where dynamic graph is defined as a set of temporal
ordered snapshot graphs, in which the shared node set
V are updated when new snapshot graph arrives.

Dynamic graph learning. Previous dynamic
graph representation learning methods usually extend
static graph algorithms by further taking the temporal
information into consideration. They can mainly be clas-
sified into three categories: (1) smoothness-based meth-
ods learn a graph autoencoder to generate node embed-
dings on each graph snapshot and ensure the temporal
smoothness of the node embeddings across consecutive
time-steps. For example, DyGEM [10] uses the learned
embeddings from the previous time-step to initialize
the embeddings in the next time-step. DynAERNN
applies RNN to smooth node embeddings at different
time-steps; (2) Recurrent-based methods capture the tem-
poral dependency using RNN. For example, GCRN [24]
first computes node embeddings on each snapshot using
GCN [3], then feeds the node embeddings into an RNN
to learn their temporal dependency. EvolveGCN [19]
uses RNN to estimate the GCN weight parameters at
different time-steps; (3) Attention-based methods use self-
attention mechanism for both spatial and temporal mes-
sage aggregation. For example, DySAT [23] propose to
use the self-attention mechanism for both temporal and
spatial information aggregation. TGAT [29] encodes the
temporal information into the node feature, then applies
self-attention on the temporal augmented node features.
However, smoothness-based methods heavily rely on tem-
poral smoothness and are inadequate when nodes exhibit
vastly different evolutionary behaviors, recurrent-based
methods scale poorly when the number of time-steps
increases due to RNN’s recurrent nature, attention-based
methods only consider the self-attention on existing edges
and are sensitive to missing/spurious links in graphs. In
contrast, DyFormer leverages Transformer to capture
the spatial-temporal dependency between all nodes pairs,
does not over-rely on the given graph structures, and is
less sensitive to missing/spurious links.

Graph Transformers. Recently, several attempts
have been made to leverage Transformer for graph rep-
resentation learning. For example, Graphormer [31]
and GraphTransformer [7] use scaled dot-product at-
tention [26] for message aggregation and generalizes the
idea of positional encoding to graph domains. Graph-
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Bert [34] first samples an egocentric network for each
node, then orders all nodes into a sequence based on node
importance, and feed into the Transformer. However,
Graphormer [31] is only feasible to small molecule
graphs and cannot scale to large graphs due to the
significant computation cost of full attention; Graph-
Transformer [7] only considers the first-hop neighbor
aggregation, which makes it sensitive to noisy graphs;
GraphBert [34] does not leverage the graph topol-
ogy and can perform poorly when graph topology is
important. In contrast, DyFormer encodes the input
graph structures as an inductive bias to guide the full-
attention optimization, which balances the trade-offs
between noisy input robustness and efficiently learning
an underlying graph structure.

3 Method

In this section, we first introduce the temporal union-
graph (Section 3.1) and our sampling strategy (Sec-
tion 3.2) that can reduce the overall complexity from
the temporal and spatial perspectives. Then, we intro-
duce spatial-temporal encoding technique (Section 3.3),
describe the two-tower transformer architecture design,
and explain how to integrate the spatial-temporal en-
coding to DyFormer (Section 3.4). Figure 1 illustrates
the overall DyFormer design.

3.1 Temporal-union graph generation One major
challenge of applying Transformers on graph representa-
tion learning is its significant computation and memory
overhead. In Transformers, the computation cost of self-
attention is O(|E| d) and its memory cost is O(|E|+|V| d).
When using full attention, the computation graph is fully
connected with |E| = |V|2, where the overall complexity
is quadratic in the graph size. Although Linformer [28]
and BigBird [32] reduce its complexity to O(|V|d) by
using sparse self-attention, it is still computationally pro-
hibitive as the size of real-world graph are easily sized to
the billion level. On dynamic graphs, this problem can be
even more severe if one naively extends the static graph
algorithm to a dynamic graph, e.g., first extracting the
spatial information of each snapshot graph separately,
then jointly reasoning the temporal information on all
snapshot graphs [23, 19]. By doing so, the overall com-
plexity grows linearly with the number of time-steps T ,
i.e., with O(|V|2Td) computation and O(|V|2T + |V|Td)
memory cost. To reduce the dependency of the overall
complexity on the number of time-steps, we propose to
first aggregate dynamic graphs G = {G1, . . . ,GT } into
a temporal-union graph Gunion(V, E ′) then employ Dy-
Former on the generated temporal-union graph, where
E ′ = Unique{(i, j) : (i, j) ∈ Et, t ∈ [T ]} is the set of all
possible unique edges in G. As a result, the overall com-

plexity of DyFormer does not grow with the number of
time-steps. Details on how to leverage spatial-temporal
encoding to recover the temporal information of edges
are described in Section 3.3.

3.2 Target node driven context node sampling
Although the temporal-union graph can alleviate the
computation burden from the temporal dimension, due
to the overall quadratic complexity of self-attention with
respect to the input graph size, scaling the training
of Transformer to real-world graphs is still non-trivial.
Therefore, a properly designed sampling strategy that
makes the overall complexity independent with graph
sizes is necessary. Our goal is to design a sub-graph
sampling strategy that ensures a fixed number of well-
connected nodes and a lower computational complexity.
To this end, we propose to first sample a subset of nodes
that we are interested in as target nodes, then sample
their common neighbors as context nodes.

Let target nodes Vtgt ⊆ V be the nodes that
we are interested in and want to compute its node
representation. For example, for the link prediction
task, Vtgt are the set of nodes that we aim to predict
whether they are connected. Then, the context nodes
Vctx ⊆ {N (i) | ∀i ∈ Vtgt} are sampled as the common
neighbors of the target nodes. Notice that since context
nodes Vctx are sampled as the common neighbors of
the target nodes, they can provide local structure
information for nodes in the target node set. Besides,
since two different nodes in the target node set can
be far apart with a disconnected neighborhood, the
neighborhood of two nodes can provide an approximation
of the global view of the full graph. During sampling,
to control the randomness involved in the sampling
process, Vctx are chosen as the subset of nodes with
the top-K joint Personalized PageRank (PPR) score [1]
to nodes in Vtgt, where PPR score is a node proximity
measure that captures the importance of two nodes in the
graph. More specifically, our joint PPR sampler proceeds
as follows: First, we compute the approximated PPR
vector π(i) ∈ RN for all node i ∈ Vtgt, where the j-th
element in π(i) can be interpreted as the probability of
a random walk to start at node i and end at node j.
We then compute the approximated joint PPR vector
π̂(Vtgt) =

∑
i∈Vtgt

π(i) ∈ RN . Finally, we select K
context nodes where each node j ∈ Vctx has the top-K
joint PPR score in π̂(Vtgt). In practice, the context node
size K is the same as the target node size |Vtgt|.

3.3 Spatial-temporal encoding Given a temporal-
union graph, our next step is to translate the spatial-
temporal information from snapshot graphs to the
temporal-union graph Gunion, which can be recognized
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Figure 1: Overview of using DyFormer for link prediction. Given snapshot graphs {G1,G2} as input, (1) we first
generate the temporal union graph with the considered max shortest path distance Dmax = 5, and its associated (2)
temporal connection encoding and (3) spatial distance encoding. Then, the encodings are mapped into ATC

i,j , A
SD
i,j

for each node pairs (i, j) using a fully connected layer. To predict whether an edge exists in G3, we first (4) sample
target and context nodes, then apply (5) DyFormer to encode target nodes and context nodes separately.

and leveraged by Transformers. Most classical GNNs
either over-rely on the given graph structure by only
considering the first- or higher-order neighbors for
feature aggregation [31] (which could make the model
fail to capture the inter-relation between nodes that
are not connected in the labeled graph) or directly
learn graph adjacency without using the given graph
structure [5] (which makes the optimization problem
challenging because the model has to iteratively learn
model parameters and estimate the graph structure). To
avoid the above two extremes, we present two simple
but effective encoding designs, i.e., temporal connection
encoding and spatial distance encoding, and introduce
how to integrate them into DyFormer.

Temporal connection encoding. Temporal con-
nection (TC) encoding is designed to inform Dy-
Former if an edge (i, j) exists in the t-th snapshot graph.
We denote ETC = [eTC

2t−1, e
TC
2t ]Tt=1 ∈ R2T×d as the tempo-

ral connection encoding lookup-table where d represents
the hidden dimension size, which is indexed by a func-
tion ψ(i, j, t) indicating whether an edge (i, j) exists at
time-step t. More specifically, we have ψ(i, j, t) = 2t if
(i, j) ∈ Gt, ψ(i, j, t) = 2t − 1 if (i, j) ̸∈ Gt and use this
value as an index to extract the corresponding temporal
connection embedding from the look-up table for next-
step processing. Note that during pre-training or the
training on first few time-steps, we need to mask-out
certain time-steps to avoid leaking information related
to the predicted items (e.g., the temporal reconstruction
task in Section. 4.1). In these cases, we set ψ(i, j, t′) = Ø
where t′ denotes the time-step we mask-out, and skip
the embedding extraction at time t′.

Spatial distance encoding. Spatial distance (SD)
encoding is designed to provide DyFormer a global
view of the graph structure. The success of Transformer
is largely attributed to its global receptive field due to
its full attention, i.e., each token in the sequence can
attend independently to other tokens and process its
representations. Computing full attention requires the
model to explicitly capturing the positions dependency
between tokens, which can be achieved by either as-
signing each position an absolute positional encoding
or encode the relative distance using relative positional
encoding. However, for graphs, the design of unique
node positions is not mandatory because a graph is not
changed by the permutation of its nodes. To encode the
global structural information of a graph in the model,
inspired by [31], we adopt a spatial distance encoding
that measures the relative spatial relationship between
any two nodes in the graph, which is a generalization
of the classical Transformer’s positional encoding to the
graph domain. Let Dmax be the maximum shortest path
distance (SPD) we considered, where Dmax is a hyper-
parameter that can be smaller than the graph diameter.
Specifically, given any node i and node j, we define
ϕ(i, j) = min{SPD(i, j), Dmax} as the SPD between
the two nodes if SPD(i, j) < Dmax and otherwise as
Dmax. Let ESD = [eSD1 , . . . , eSDDmax

] ∈ RDmax×d as the
spatial distance lookup-table which is indexed by the
ϕ(i, j), where ϕ(i, j) is used to select the spatial dis-
tance encoding eSDϕ(i,j) that provides the spatial distance
information of two nodes.

Integrate spatial-temporal encoding. We in-
tegrate temporal connection encoding and spatial dis-
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tance encoding by projecting them as a bias term in
the self-attention module. Specifically, to integrate
the spatial-temporal encoding of node pair (i, j) to
DyFormer, we first gather all its associated tem-
poral connection encodings on different time-steps as
{eTC

ϕ(i,j,t)}
T
t=1. Then, we apply weight average on all

encodings over the temporal axis and projected the
temporal averaged encoding as a scalar by ATC

i,j =

Linear
(
WeightAverage({eTC

ϕ(i,j,t)}
T
t=1)

)
∈ R, where the

aggregation weight is learned during training. Similarly,
to integrate the spatial distance encoding, we project the
spatial distance encoding of node pair (i, j) as a scalar
by ASD

i,j = Linear(eSDϕ(i,j)) ∈ R. Then, ATC
i,j and ASD

i,j are
used as the bias term to the self-attention, which we
describe in detail in Section 3.4.

3.4 Graph Transformer architecture As shown in
Figure 1, each layer in DyFormer consists of two towers
(i.e., the target node tower and the context node tower) to
encode the target nodes and the context nodes separately.
The same set of parameters are shared between two
towers. The two-tower structure is motivated by the fact
that nodes within each group are sampled independently
but there exist neighborhood relationships between inter-
group nodes. Only attending inter-group nodes help
DyFormer better capture this context information
without fusing representations from irrelevant nodes.
In the following, we provide details on the context node
tower and the detailed formulation for the target node
tower can be obtained by switching “ctx” with “tgt”.

• First, we compute the self-attentions to aggregate
information from target nodes to context nodes (denote
as “ctx”) and from context nodes to target nodes
(denote as “tgt”). Let define H

(ℓ)
ctx ∈ R|Vctx|×d as

the ℓ-th layer output of the context-node tower and
H

(ℓ)
tgt ∈ R|Vtgt|×d as the ℓ-th layer output of the target-

node tower. Then, the ℓth layer self-attention is

A
(ℓ)
ctx =

(LN(H
(ℓ−1)
ctx )W

(ℓ)
Q )(LN(H

(ℓ−1)
tgt )W

(ℓ)
K )⊤

√
d

,

where LN(H) stands for applying layer normalization
on H and W

(ℓ)
Q ,W

(ℓ)
K are weight matrices.

• Then, we integrate spatial-temporal encoding as a bias
term to self-attention as

P
(ℓ)
ctx = A

(ℓ)
ctx +ATC[Vctx;Vtgt] +ASD[Vctx;Vtgt],

where ATC[VA;VB], ASD[VA;VB] denote the matrix
form of the projected temporal connection and spatial
distance self-attention bias with row and column
indexed by VA and VB .

1

1Given a matrix A ∈ Rm×n, the element at the i-th row and
j-th column is denoted as Ai,j , the submatrix formed from row

Irow = {a1, . . . , ar} and columns Icol = {b1, . . . , bs} is denoted
as A [Irow; Icol].

• After that, we use the normalized P
(ℓ)
ctx and P

(ℓ)
tgt to

propagate information between two towers, i.e.,

Z
(ℓ)
ctx = Softmax(P

(ℓ)
ctx)LN(H

(ℓ−1)
tgt )W

(ℓ)
V +H

(ℓ−1)
ctx ,

• Finally, a residual connected feed-forward network is
applied to the aggregated message to produce the final

output H
(ℓ)
ctx = FFN(LN(Z

(ℓ)
ctx)) + Z

(ℓ)
ctx where FFN(·)

denotes the multi-layer feed-forward network. The
final layer output of the target node tower H

(L)
tgt will

be used to compute the loss defined in Section 4.

4 DyFormer training

Transformers usually require a significant amount of
supervised data to guarantee their generalization ability
on unseen data. However, existing dynamic graph
datasets are relatively small and may not be sufficient
to train a powerful Transformer. To overcome this
challenge, we propose to first pre-train DyFormer with
two complementary self-supervised objective functions
(in Section 4.1). Then, we fine-tune DyFormer using
the supervised objective function (in Section 4.2). Notice
that the same set of snapshot graphs but different
objective functions are used for pre-training and fine-
tuning. Finally, via an information-theoretic analysis,
we show that the representation can enjoy a better
generalization ability on downstream tasks by optimizing
our pre-training losses (in Section 4.3).

4.1 Pre-training We introduce a temporal reconstruc-
tion loss Lrecon(Θ) and a multi-view contrastive loss
Lview(Θ) as self-supervised object functions. Then, our
overall pre-taining loss is Lpre-train(Θ) = Lrecon(Θ) +
γLview(Θ), where γ is a hyper-parameter that balances
the importance of two pre-taining tasks as in Figure 2.

Temporal reconstruction loss. To ensure that
the spatial-temporal encoding is effective and can inform
DyFormer the temporal dependency between multiple
snapshot graphs, we introduce a temporal reconstruction
loss as our first pre-training objective. Our goal is to re-
construct the t-th graph snapshot Gt’s structure using all
graph snapshot G. Let H

(L)
tgt (t) denote the target-node

tower’s final layer output computed on G. To decode the
graph structure of graph snapshot Gt, we use a fully con-
nected layer as the temporal structure decoder that takes
H

(L)
tgt (t) as input and output E(t) = Linear(H

(L)
tgt (t)) ∈

R|Vtgt|×d with ei(t) ∈ Rd denotes the i-th row of E(t).
Then, the temporal reconstruction loss is Lrecon(Θ) =∑T

t=1 LinkPredLoss({ei(t)}i∈Vtgt
,Vtgt, Et), where σ(·) is

Sigmoid function and LinkPredLoss({xi}i∈S ,S, E) :=∑
i,j∈S

(
−

∑
(i,j)∈E

log(σ(x⊤
i xj))−

∑
(i,j)̸∈E

log(1−σ(x⊤
i xj))

)
.

Multi-view contrastive loss. Recall that Vctx is
constructed by deterministically selecting the common
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Figure 2: Pre-training: Given snapshot graphs {G1,G2}
as input, we first generate the temporal union graph.
Then, we sample the target node Vtgt and two different
set of context nodes Vctx, Ṽctx. After that, we apply
DyFormer on {Vtgt,Vctx} and {Vtgt, Ṽctx} to output
H

(L)
tgt and H̃

(L)
tgt . We optimize Lview(Θ) by maximizing

the similarity between H
(L)
tgt and H̃

(L)
tgt , and optimize

Lrecon(Θ) by recovering snapshot graphs using H
(L)
tgt .

neighbors of Vtgt with the top-K PPR score. Then, we

introduce Ṽctx as the subset of the common neighbors of
Vtgt randomly sampled with sampling probability of each
node proportional to its PPR score. Since a different
set of context nodes are provided for the same set of
target nodes, {Vtgt, Ṽctx} provides an alternative view of
{Vtgt,Vctx} when computing the representation for nodes
in Vtgt. Notice that although the provided context nodes
are different, since they have the same target nodes, it
is natural to expect the calculated representation have
high similarity. We denote H

(L)
tgt and H̃

(L)
tgt as the final

layer model output that are computed on {Vtgt,Vctx}
and {Vtgt, Ṽctx}. To this end, we introduce our second

self-supervised objective function as Lview(Θ) = ∥H(L)
tgt −

SG(H̃
(L)
tgt )∥2F + ∥SG(H

(L)
tgt )− H̃

(L)
tgt ∥2F, where SG denotes

stop gradient.

4.2 Fine-tuning To apply the pre-trained model on
downstream tasks, we choose to fine-tune the pre-trained
model with downstream task objective functions. Here,
we take link prediction as an example. Our goal is to
predict the existence of a link at time T + 1 using infor-
mation up to time T . Let H

(L)
tgt ({Gj}tj=1) denote the final

output of DyFormer using snapshot graphs {Gj}tj=1.
Then, the link prediction loss is LLinkPred(Θ) =∑T−1

t=1 LinkPredLoss(H
(L)
tgt ({Gj}tj=1),Vtgt, Et+1).

4.3 Importance of pre-training In this section,
we show that our pre-training objectives can improve
the generalization error under mild assumptions and
results in a better performance on downstream tasks.
Let X denote the input random variable, S as the
self-supervised signal (also known as a different view
of input X), and ZX = f(X), ZS = f(S) as the
representations that are generated by a deterministic
mapping function f . In our setting, we have the sampled

sub-graph of temporal-union graph Gunion induced by
node {Vtgt,Vctx} as input X, the sampled subgraph of
Gunion induced by node {Vtgt, Ṽctx} as self-supervised
signal S, and DyFormer as f that computes the
representation of X,S by ZX = f(X), ZS = f(S).
Besides, we introduce the task-relevant information as
Y , which refers to the information that is required for
downstream tasks. For example, when the downstream
task is link prediction, Y can be the ground truth graph
structure about which we want to reason. Notice that
in practice we have no access to Y during pre-training
and it is only introduced as the notation for analysis.
Furthermore, let H(A) denote entropy, H(A|B) denote
conditional entropy, I(A;B) denote mutual information,
and I(A;B|C) denote conditional mutual information.
More details and preliminaries on information theory
are deferred to Appendix D.

In the following, we study the generalization error
of the learned representation ZX under the binary
classification setting. We choose Bayes error rate (i.e.,
the lowest possible test error rate a binary classifier
can achieve) as our evaluation metric, which can be
formally defined as Pe = 1 − E[maxy P(Y = y|ZX)].
Before proceeding to our result, we make the following
assumption on input X, self-supervised signal S, and
task-relevant information Y .

Assumption 1. Assume task-relevant information is
shared between input random variable X, self-supervised
signal S, i.e., I(X;Y |S) = 0 and I(S;Y |X) = 0.

We argue the above assumption is mild because input
X and self-supervised signal S are two different views
of the data, and are expected to contain task-relevant
information Y . In Proposition 4.1, we make connections
between the Bayes error rate and pre-training losses,
which explains why the proposed pre-training losses are
helpful for downstream tasks. Proof in Appendix D.

Proposition 4.1. We can upper bound Bayes error
rate by Pe ≤ 1− exp(−H(Y )+ I(ZX ;X)− I(ZX ;X|Y )),
and reduce the upper bound of Pe by (1) maximizing
the mutual information I(ZX ;X) between the learned
representation ZX and input X, which can be achieved by
minimizing temporal reconstruction loss Lrecon(Θ), and
(2) minimizing the task-irrelevant information between
the learned representation ZX and input X, which can
be achieved by minimizing our multi-view loss Lview(Θ).

The Proposition 4.1 suggests that if we can create a
different views S of our input data X such that both X
and S contain the task-relevant information Y , then by
jointly optimizing two pre-training losses can result in
the representation ZX with a lower Bayes error rate Pe.
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5 Experiments

We evaluate DyFormer using dynamic graph link
prediction, which has been widely used in [23, 10] to
compare its performance with a variety of static and
dynamic graph representation learning baselines. Results
on node classification is deferred to Appendix B.

Datasets. The detailed data statistics are summa-
rized in Table 1, where the dynamic graph is defined as
a set of temporal ordered snapshot graph. Following the
procedure as described in [23], the graph snapshots are
created by splitting the data using suitable time win-
dows such that each snapshot has an equitable number
of interactions. In each snapshot, the edge weights are
determined by the number of interactions.

Table 1: Dataset statistics.

RDS UCI Yelp ML-10M
SNAP-
Wikipedia

SNAP-
Reddit

|V| 167 1, 809 6, 569 20, 537 9, 227 11, 000
|E| 1, 521 16, 822 95, 361 43, 760 157, 474 672, 447
T 100 13 16 13 11 11

Link prediction. To compare DyFormer with
baselines, we follow the evaluation strategy in [10, 36, 23]
by training a logistic regression classifier taking two
node embeddings as input for dynamic graph link
prediction. Specifically, we learn the dynamic node
representations on snapshot graphs {G1, . . . ,GT } and
evaluate DyFormer by predicting links at GT+1. For
evaluation, we consider all links in GT+1 as positive
examples and an equal number of sampled unconnected
node pairs as negative examples. We split 20% of
the edge examples for training the classifier, 20% of
examples for hyper-parameters tuning, and the rest 60%
of examples for model performance evaluation following
the practice of existing studies (e.g., [23]). We evaluate
the link prediction performance using Micro and Macro
scores, where the Micro is calculated across the link
instances from all the time-steps while the Macro is
computed by averaging the AUC at each time-step.
During inference, all nodes in the testing set (from 60%
edge samples in GT+1) are selected as the target nodes.
To scale the inference of the testing sets of any sizes,
we compute the full-attention by first splitting all self-
attentions into multiple chunks then iteratively compute
the self-attention in each chunk. Since only a fixed
number of self-attention is computed at each iteration,
we significantly reduce DyFormer’s inference memory
consumption. We also repeat all experiments three times
with different random seeds.

5.1 Experiment results
The effectiveness of DyFormer. Table 2 indi-

cates the state-of-the-art performance of our approach
on link prediction tasks, where DyFormer achieves a

Table 2: Comparing DyFormer with baselines using
Micro- and Macro-AUC on real-world datasets.

Method AUC RDS UCI Yelp ML-10M

Node2Vec
Micro 81.10± 0.87 81.41± 0.60 68.93± 0.33 90.50± 0.83
Macro 82.85± 0.86 81.39± 0.76 67.38± 0.49 89.48± 0.62

GraphSAGE
Micro 85.49± 0.96 79.85± 2.62 62.36± 1.01 86.31± 0.97
Macro 86.64± 0.89 78.45± 2.01 58.36± 0.91 90.23± 0.90

DynAERNN
Micro 80.56± 0.77 79.29± 1.90 71.54± 0.83 87.01± 0.88
Macro 80.16± 0.91 83.81± 1.25 72.29± 0.58 89.04± 0.67

DynGEM
Micro 79.29± 1.01 76.36± 0.83 69.43± 1.09 79.80± 0.88
Macro 81.94± 1.97 78.22± 0.99 69.93± 0.78 84.86± 0.49

DySAT
Micro 83.89± 0.92 83.10± 0.99 69.00± 0.22 88.91± 0.87
Macro 83.60± 0.68 86.32± 1.46 69.42± 0.25 90.63± 0.91

EvolveGCN
Micro 85.35± 0.87 85.81± 0.50 68.99± 0.67 92.79± 0.21
Macro 86.53± 0.76 84.18± 0.72 69.41± 0.26 93.45± 0.19

DyFormer
Micro 88.77± 0.50 87.91± 0.32 73.39± 0.21 95.30± 0.36
Macro 89.77± 0.46 88.49± 0.43 74.31± 0.23 96.16± 0.22

Table 3: Comparison of Micro- and Macro-AUC on
real-world datasets restricted to new edges.
Method AUC RDS UCI Yelp ML-10M

Node2Vec
Micro 75.62± 1.42 75.31± 0.83 68.83± 0.29 88.92± 0.79
Macro 76.25± 0.85 75.82± 0.96 68.00± 0.51 88.01± 0.50

GraphSAGE
Micro 80.21± 0.87 76.56± 1.91 61.97± 1.00 85.18± 0.89
Macro 79.99± 0.78 75.94± 1.88 58.49± 0.89 89.31± 0.93

DynAERNN
Micro 68.43± 1.13 77.39± 2.10 70.82± 0.93 86.89± 0.75
Macro 68.18± 1.23 81.82± 1.71 71.56± 0.77 89.45± 0.53

DynGEM
Micro 72.43± 1.62 74.72± 0.73 69.23± 1.76 77.18± 1.96
Macro 74.49± 2.21 76.34± 0.78 70.67± 1.32 82.62± 0.49

DySAT
Micro 76.28± 1.34 81.18± 1.09 69.12± 0.21 88.21± 0.64
Macro 76.87± 1.21 83.43± 1.57 69.20± 0.20 88.98± 0.87

EvolveGCN
Micro 78.36± 0.91 81.99± 0.73 68.73± 0.64 90.91± 0.32
Macro 79.18± 1.01 82.18± 0.76 68.63± 0.30 91.45± 0.29

DyFormer
Micro 82.78± 0.56 85.78± 0.99 73.32± 0.22 93.01± 0.23
Macro 82.89± 0.52 86.21± 0.56 73.88± 0.22 93.56± 0.21

consistent 1% ∼ 3% Macro gain on all datasets. Besides,
DyFormer is more stable when using different random
seeds observed from a smaller standard deviation of the
AUC score. To better understand the behaviors of dif-
ferent methods from a finer granularity, we compare the
model performance at each time-step in Figure 4 and
observe that the performance of DyFormer is relatively
more stable than other methods over time. Besides, we
additionally report the results of dynamic link prediction
evaluated only on unseen links at each time-step. Here,
we define unseen links as the ones that first appear at the
prediction time-step but are not in the previous graph
snapshots. From Table 3, we find that although all meth-
ods achieve a lower AUC score, which may be due to the
new link prediction is more challenging, DyFormer still
achieves a consistent 1% ∼ 3% Macro AUC-score gain.

The effectiveness of pre-training. We com-
pare the performance of DyFormer with/without pre-
training. As shown in Figure 3, DyFormer ’s perfor-
mance is significantly improved if we first pre-train it
with the self-supervised loss then fine-tuning on down-
stream tasks. When comparing the AUC scores at each
time-step, we observe that DyFormer without pre-
training has a lower performance but a larger variance.
This may be due to the vast number of training param-
eters in DyFormer , which potentially requires more
data to be trained well. The self-supervised pre-training
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Figure 3: Comparison of the Micro- and Macro-AUC score of DyFormer with and without pre-training.

Ours Ours Ours

Figure 4: Comparison of per-step AUC-score and Macro AUC-score across multiple time steps.

Table 4: Comparison of DyFormer and its variants
with input graph with different noisy level.

Method AUC 10% 20% 50%

UCI
1-hop attention

Micro 82.97± 0.56 81.23± 0.78 77.85± 0.66
Macro 83.01± 0.61 82.10± 0.60 78.43± 0.67

Full attention
Micro 86.98± 0.51 86.10± 0.57 84.36± 0.49
Macro 86.12± 0.57 85.93± 0.59 85.51± 0.51

Yelp
1-hop attention

Micro 70.00± 0.20 68.55± 0.21 65.32± 0.22
Macro 69.94± 0.20 68.45± 0.23 65.61± 0.15

Full attention
Micro 70.99± 0.20 71.74± 0.19 70.93± 0.21
Macro 71.64± 0.18 71.67± 0.21 69.93± 0.21

alleviates this by utilizing additional unlabeled data.
Results on dataset with missing/spurious

links. We study the effect of noisy input on the
performance of DyFormer using UCI [16, 18] and
Yelp datasets. We achieve this by randomly selecting
10%, 20%, 50% of the node pairs and changing their
connection status either from connected to not-connected
or from not-connected to connected. As shown in
Table 4, although the performance of both using full-
attention and 1-hop attention decreases as the noisy
level increases, the performance of using full-attention
aggregation is more stable and robust as the noisy level
changes. This is because 1-hop attention relies more
on the given structure, while full-attention only take
the give structure as a reference and learns the “ground
truth” graph structure by gradient descent update.

More results. Due to the space limit, more abla-
tion study results are deferred to Appendix A, which
includes ablation study on the effectiveness of spatial-
temporal encoding, the number of layers in DyFormer ,
two-tower and single-tower model architecture, self-
attention mechanism, and computation cost.

6 Conclusion

In this paper, we introduce DyFormer for dynamic
graph representation learning, which can efficiently lever-
age the graph topology and capture implicit edge con-
nections. To further improve the generalization ability,
two complementary pre-training tasks are introduced.
To handle large-scale dynamic graphs, a temporal-union

graph structure and a target-context node sampling strat-
egy are designed for an efficient and scalable training.
Extensive experiments on real-world dynamic graphs
show that DyFormer presents significant performance
gains over several state-of-the-art baselines. Potential
future directions include exploring GNNs on continuous
dynamic graphs and studying its expressive power.
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A More experiment results

The effectiveness of spatial-temporal encod-
ing. In Table 5, we conduct an ablation study by in-
dependently removing two encodings to validate the
effectiveness of spatial-temporal encoding. We observe
that even without any encoding (i.e., ignoring the spatial-
temporal graph topologies), due to full-attention, Dy-
Former is still very competitive comparing with the
state-of-the-art baselines in Table 2. However, we also
observe a 0.6% ∼ 4.6% performance gain when adding
the spatial connection and temporal distance encoding,
which empirically shows their effectiveness.

Table 5: Comparison of the Micro- and Macro-AUC of
with and without temporal-connection (TC) and spatial-
distance (SD) encoding on the real-world datasets.
Method AUC UCI Yelp ML-10M

Both encoding
Micro 87.91± 0.32 73.39± 0.21 95.30± 0.36
Macro 88.49± 0.43 74.31± 0.23 96.16± 0.22

Without encoding
Micro 83.27± 0.29 72.82± 0.37 91.81± 0.43
Macro 83.87± 0.47 73.80± 0.38 92.59± 0.35

Only TC encoding
Micro 84.78± 0.31 73.36± 0.26 94.51± 0.37
Macro 84.60± 0.42 74.31± 0.25 95.43± 0.29

Only SD encoding
Micro 87.01± 0.46 72.98± 0.32 92.34± 0.40
Macro 87.99± 0.47 73.90± 0.36 93.13± 0.33

The effectiveness of stacking more layers.
When stacking more layers, traditional GNNs usually
suffer from the over-smoothing [35, 30] and result in a
degenerated performance. We study the effect of apply-
ing more DyFormer layers and show results in Table 6.
In contrast to previous studies, DyFormer has a rela-
tively stable performance and does not suffer much from
performance degradation when the number of layers in-
creases. This is potentially due to that DyFormer only
requires a shallow architecture since each individual layer
is capable of modeling longer-range dependencies due to
full-attention. Besides, the self-attention mechanism can
automatically attend importance neighbors, therefore
alleviate the over-smoothing and bottleneck effect.

Table 6: Comparison of the Micro- and Macro-AUC
score of DyFormer with different number of layers.
Method AUC UCI Yelp ML-10M

2 layers
Micro-AUC 87.89± 0.43 74.30± 0.21 94.99± 0.21
Macro-AUC 88.31± 0.53 74.29± 0.23 96.08± 0.15

4 layers
Micro-AUC 87.42± 0.36 73.39± 0.21 95.30± 0.36
Micro-AUC 88.35± 0.37 74.31± 0.23 96.16± 0.22

6 layers
Micro-AUC 87.91± 0.32 74.30± 0.20 95.35± 0.28
Micro-AUC 88.49± 0.43 74.28± 0.22 96.11± 0.18

Comparing two-tower to single-tower archi-
tecture. In Table 7, we compare the performance of
DyFormer with single- and two-tower design where a
single-tower means a full-attention of over all pairs of
target and context nodes. We observe that the two-tower
DyFormer has a consistent performance gain (0.5%

Table 7: Comparison of the Micro- and Macro-AUC
of DyFormer using single-tower and two-tower model
architecture on the real-world datasets.
Method AUC UCI Yelp ML-10M

Single-tower
Micro 87.86± 0.60 72.95± 0.20 94.80± 0.81
Macro 88.27± 0.68 73.81± 0.21 95.49± 0.57

Two-tower
Micro 87.91± 0.32 73.39± 0.21 95.30± 0.36
Macro 88.49± 0.43 74.31± 0.23 96.16± 0.22

Micro- and Macro) over the single-tower on Yelp and
ML-10M [13]. This may be due to that the nodes within
the target or context node set are sampled independently
while inter-group nodes are likely to be connected. Only
attending inter-group nodes helps DyFormer better
capturing these contextual information without fusing
representations from irrelevant nodes.

Comparing K-hop attention with full-
attention. To better understand full-attention, we com-
pare it with 1-hop and 3-hop attention. These variants
are evaluated based on the single-towerDyFormer to in-
clude all node pairs into consideration. Table 8 shows the
results where we observe that the full-attention presents
a consistent performance gain around 1% ∼ 3% over the
other two variants. This demonstrates the benefits of
full-attention when modeling implicit edge connections
in graphs with a larger receptive fields comparing to its
K-hop counterparts.

Table 8: Comparison of the Micro- and Macro-AUC of
full attention and K-hop attention using the single-tower
architecture on the real-world datasets.
Method AUC UCI Yelp ML-10M

Full attention
Micro 87.86± 0.60 72.95± 0.20 94.80± 0.81
Macro 88.27± 0.68 73.81± 0.21 95.49± 0.57

1-hop neighbor
Micro 84.62± 0.31 71.33± 0.43 91.88± 0.73
Macro 85.10± 0.15 71.45± 0.45 92.18± 0.44

3-hop neighbor
Micro 87.01± 0.89 71.19± 0.22 91.83± 0.92
Macro 87.48± 0.88 72.31± 0.22 92.33± 0.82

Computation time and memory consumption.
In Table 9, we compare the memory consumption and
epoch time on the last time step of ML-10M and Yelp
dataset. We chose the last time step of these two
datasets because its graph size is relatively larger than
others, which can provide a more accurate time and
memory estimation. The memory consumption is record
by nvidia-smi and the time is recorded by function
time.time(). During pre-training, DyFormer samples
256 context node and 256 context node at each iteration.
During fine-tuning, DyFormer first 256 positive links
(links in the graph) and sample 2, 560 negative links
(node pairs that do not exist in the graph), then treat
all nodes in the sampled node pairs at target nodes
and sample the same amount of context nodes. Notice
that although the same sampling size hyper-parameter
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is used, since the graph size and the graph density are
different, the actual memory consumption and time are
also different. For example, since the Yelp dataset has
more edges with more associated nodes for evaluation
than ML-10M, the memory consumption and time are
required on Yelp than on ML-10M dataset.

Table 9: Comparison of the epoch time and memory
consumption of DyFormer with baseline methods.
Dataset Method Memory Epoch / Total time

ML-10M

DySAT 9.2GB 97.2s/4276.8s (45 epochs)
EvolveGCN 13.6GB 6.9s/821.1s (120 epochs)
DyFormer (Pretrain) 6.5GB 38.9s/986.5s (89 epochs)
DyFormer (Finetune) 10.1GB 2.98s/62.2s (22 epochs)

Yelp

DySAT 5.4GB 29.4s/4706.4s (160 epochs)
EvolveGCN 7.5GB 19.14s/1091.2s (57 epochs)
DyFormer (Pretrain) 21.3GB 11.8s/413.5s (34 epochs)
DyFormer (Finetune) 21.3GB 21.41s/521.6s (23 epochs)

B Node classification results

In this section, we show that although DyFormer is
orginally designed for the link prediction task, the
learned representation of DyFormer can be also
applied to binary node classification. We evaluate
DyFormer on SNAP-Wikipedia and SNAP-Reddit
dataset [17], where dataset statistic is summarized in
Table 1. The snapshot is created in a similar manner
as the link prediction task. As shown in Table 10 and
Figure 5, DyFormer performs around 0.7% better than
all baselines on the SNAP-Wikipedia dataset and around
0.7% better than EvolveGCN on SNAP-Reddit dataset.
However, the results DyFormer on the SNAP-Reddit
dataset2 is slightly lower than DySAT. This is poten-
tially due to DyFormer is less in favor of a dense graph,
e.g., SNAP-Reddit dataset, with very dense graph struc-
ture information encoded by spatial-temporal encodings.

Table 10: Comparison of the Micro- and Macro-AUC
on the real-world datasets for binary node classification
task.

Method AUC
SNAP-
Wikipedia

SNAP-
Reddit

DySAT
Micro 94.69± 0.46 87.35± 0.28
Macro 94.74± 0.66 87.36± 0.30

EvolveGCN
Micro 92.31± 0.68 84.72± 0.89
Macro 92.36± 0.85 84.79± 0.88

DyFormer (w/o pre-training)
Micro 92.90± 0.84 82.37± 0.78
Macro 92.94± 0.62 84.41± 0.82

DyFormer (w/ pre-training)
Micro 95.49± 0.66 85.48± 0.43
Macro 95.55± 0.65 85.50± 0.44

2The Reddit dataset are collected and released by SNAP at

Stanford University. Please refer to http://snap.stanford.edu/

jodie/ for details.

Figure 5: Comparison of DyFormer with baselines
across multiple time steps, where the Macro score is
reported in the box next to the curves

C Experiment configuration

C.1 Hardware specification and environment
We run our experiments on a single machine with Intel
i9-10850K, Nvidia RTX 3090 GPU, and 32GB RAM
memory. The code is written in Python 3.7 and we use
PyTorch 1.4 on CUDA 10.1 to train the model on the
GPU.

C.2 Baseline hypter-parameters tuning
Baselines. 3 We compare with several state-of-

the-art methods as baselines including both static and
dynamic graph learning algorithms. For static graph
learning algorithms, we compare against Node2Vec[11]
and GraphSAGE[12]. To make the comparison fair, we
feed these static graph algorithms the same temporal-
union graph used in DyFormer rather than any single
graph snapshots. For dynamic graph learning algorithms,
we compare against DynAERNN[9], DynGEM[10],
DySAT[23], and EvolveGCN [19]. We use the official
implementations for all baselines and select the best
hyper-parameters for both baselines and DyFormer.

Model setups. The hyper-parameters for each
dataset is selected using grid search on the validation set.
More specifically, we select the negative sampling ratio
(i.e., number of positive edge/number of negative edge)

3We only compare with dynamic graph algorithms that takes
a set of temporal ordered snapshot graph as input, and leave the

study on other dynamic graph structure (e.g., continuous time-step
algorithms [15, 29, 21] and datasets) as a future direction.
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in the range {0.01, 0.1, 1}, number of the self-attention
head is selected in the range {8, 16}, feature dimension is
selected in the range {128, 256}, number of layers in the
range {2, 4, 6}, maximum shortest path distance Dmax

in the range {2, 3, 5} on the validation set, mini-batch
size as 512, and the pre-training loss weight γ = 1.

We tune the hyper-parameters of baselines following
their recommended guidelines.

Node2Vec4: We use the default setting as in-
troduced in [11]. More specifically, for each node we
use 10 random walks of length 80, context window
size as 10. The in-out hyper-parameter p and return
hyper-parameter q are selected by grid-search in range
{0.25, 0.5, 1, 2, 5} on the validation set.

GraphSAGE5: We use the default setting in [12].
More specifically, we train two layer GNN with neighbor
sampling size 25 and 10. The neighbor aggregation is
selected by grid-search from “mean-based aggregation”,
“LSTM-based aggregation”, “max-pooling aggregation”,
and “GCN-based aggregation” on the validation set. In
practice, GCN aggregator performs best on RDS [22],
and UCI, and max-pooling aggregator performs best on
Yelp and ML-10M.

DynGEM and DynAERNN6: We use the default
setting as introduced in [10] and [9]. The scaling
and regularization hyper-parameters is selected by grid-
search in range α ∈ {10−6, 10−5}, β ∈ {0.1, 1, 2, 5}, and
ν1, ν2 ∈ {10−6, 10−4} on the validation set.

DySAT7: We use the default setting and model
architecture as introduced in [23]. The co-occurring
positive node pairs are sampled by running 10 random
walks of length 40 for each node. The negative sampling
ratio is selected by grid-search in the range {0.01, 0.1, 1},
number of the self-attention head is selected in the range
{8, 16}, and the feature dimension is selected in the
range {128, 256} on the validation set.

EvolveGCN8: We use the default setting and
model architecture as introduced in [19]. We train
both EvolveGCN-O and EvolveGCN-H and report the
architecture with the best performance on the validation
set. In practice, EvolveGCN-O performs best on UCI,
Yelp, and ML-10M, EvolveGCN-H performs best on
Enron and RDS.

D Pre-training can reduce the irreducible error

D.1 Preliminary Data processing inequal-
ity. Random variables X,Y, Z are said to form a
Markov chain X → Y → Z if the joint probability mass

4https://github.com/aditya-grover/node2vec
5https://github.com/williamleif/GraphSAGE
6https://github.com/palash1992/DynamicGEM
7https://github.com/aravindsankar28/DySAT
8https://github.com/IBM/EvolveGCN

function can be written as P (x, y, z) = p(x)p(y|x)p(z|y).
Suppose random variable X,Y, Z forms a Markov chain
X → Y → Z, then we have I(X;Y ) ≥ I(X;Z).
Bayes error and entropy. In the binary classification
setting, Bayes error rate is the lowest possible test
error rate (i.e., irreducible error), which can be formally
defined as

(D.1) Pe = E
[
1−max

y
p(Y = y|X)

]
,

where Y denotes label and X denotes input. [8] derives
an upper bound showing the relation between Bayes
error rate with entropy:

(D.2) − log(1− Pe) ≤ H(Y |X).

The above inequality is used as the foundation of our
following analysis.

D.2 Proof of Proposition 4.1 In the following, we
utilize the analysis framework developed in [25] to show
the importance of two pre-training loss functions. By
using Eq. D.2, we have − log(1− Pe) ≤ H(Y |ZX). By
rearanging the above inequality, we have the following
upper bound on the Bayes error rate
(D.3)

Pe ≤ 1− 1

exp
(
H(Y |ZX)

)
=
(a)

1− 1

exp
(
H(Y )− I(ZX ;Y )

)
=
(b)

1− 1

exp
(
H(Y )− I(ZX ;X) + I(ZX ;X|Y )

) ,
where equality (a) is due to I(ZX ;Y ) = H(Y ) −
H(Y |ZX), equality (b) is due to I(ZX ;Y ) = I(ZX ;X)−
I(ZX ;X|Y )+ I(ZX ;Y |X) and I(ZX ;Y |X) = 0 because
ZX = f(X) is a deterministic mapping given input
X. Our goal is to find the deterministic mapping
function f to generate ZX that can maximize I(ZX ;X)−
I(ZX ;X|Y ), such that the upper bound on the right
hand side of Eq. D.3 is minimized. We can achieve this
by:
• Maximizing the mutual information I(ZX ;X) between
the representation ZX to the input X.

• Minimizing the task-irrelevant information
I(ZX ;X|Y ), i.e., the mutual information be-
tween the representation ZX to the input X given
task-relevant information Y .
In the following, we first show that minimiz-

ing Lrecon(Θ) can maximize the mutual information
I(ZX ;X), then we show that minimizing Lview(Θ) can
minimize the task irrelevant information I(ZX ;X|Y ).
Maximize mutual information I(ZX ;X). By
the relation between mutual information and entropy
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I(ZX ;X) = H(X)−H(X|ZX), we know that maximiz-
ing the mutual information I(ZX ;X) is equivalent to
minimizing the conditional entropy H(X|ZX). Notice
that we ignore H(X) because it is only dependent on the
raw feature and is irrelevant to feature representation
ZX . By the definition of conditional entropy, we have
(D.4)

H(X|ZX) =
∑

zx∈ZX

p(zx)H(X|ZX = zx)

=
∑

zx∈ZX

p(zx)
∑
x∈X

−p(x|zx) log p(x|zx)

=
∑

zx∈ZX

∑
x∈X

−p(x, zx) log p(x|zx)

= EP(X,ZX)

[
− log P(X|ZX)

]
= min

Qθ

EP(X,ZX)

[
− logQθ(X|ZX)

]
−KL

(
P(X|ZX)∥Qθ(X|ZX)

)
≤ min

Qθ

EP(X,ZX)

[
− logQθ(X|ZX)

]
where Qθ(·|·) is a variational distribution with θ rep-
resent the parameters in Qθ and KL denotes KL-
divergence.

Therefore, maximizing mutual information I(ZX ;X)
can be achieved by minimizing EPX,ZX

[− logQθ(X|ZX)].
By assuming Qθ as the categorical distribution and θ as
a neural network, minimizing EPX,ZX

[− logQθ(X|ZX)]
can be think of as introducing a neural network param-
eterized by θ to predict the input X from the learned
representation ZX by minimizing the binary cross en-
tropy loss.
Minimize the task irrelevant information
I(ZX ;X|Y ). Recall that in our setting, input X is
the node features of {Vtarget,Vcontext} and the subgraph
induced by {Vtarget,Vcontext}. The self-supervised signal

S is node features of {Vtarget, Ṽcontext} and the subgraph

induced by {Vtarget, Ṽcontext}. Therefore, it is natural
to make the following mild assumption on the input
random variable X, self-supervised signal S, and task
relevant information Y .

Assumption 2. We assume tall task-relevant informa-
tion is shared between the input random variable X,
self-supervised signal S, i.e., we have I(X;Y |S) = 0 and
I(S;Y |X) = 0.

In the following, we show that minimizing
I(ZX ;X|Y ) can be achieved by minimizing H(ZX |S).
From data processing inequality, we have I(X;Y |S) ≥
I(ZX ;Y |S) ≥ 0. From Assumption 2, we have
I(X;Y |S) = 0, therefore we know I(ZX ;Y |S) = 0. By
the relation between mutual information and entropy,

we have
(D.5)
I(ZX ;X|Y ) = H(ZX |Y )−H(ZX |X,Y )

=
(a)

H(ZX |Y )

= H(ZX |S, Y ) + I(ZX ;S|Y )

= H(ZX |S)− I(ZX ;Y |S) + I(ZX ;S|Y )

=
(b)
H(ZX |S) + I(ZX ;S|Y )

≤
(c)
H(ZX |S) + I(X;S|Y ),

where equality (a) is due to H(ZX |X,Y ) = 0 since
ZX = f(X) and f is a deterministic mapping, equality
(b) is due to I(ZX , Y |S) = 0, and inequality (c) is due
to data processing inequality.

From Eq. D.4, we know that

(D.6)

H(ZX |S) = EP(S,ZX)[− log P(ZX |S)]

≤ min
Q′

ϕ

EP(S,ZX)

[
− logQ′

ϕ(ZX |S)
]
.

By assuming Q′
ϕ as the Gaussian distribu-

tion and ϕ as a neural network, minimizing
EPS,ZX

[− logQϕ(ZX |S)] can be think of as introduc-
ing a neural network parameterized by ϕ that take S
as input and output ZS = NeuralNetworkϕ(S), then
minimize the mean-square error between ZX and ZS .
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